
pg_chameleon Documentation
Release v2.0.18

Federico Campoli

Mar 26, 2023

Contents

1 FEATURES 3

2 CHANGELOG 5
2.1 changelog . 5

3 RELEASE NOTES 11
3.1 RELEASE NOTES . 11

4 Upgrade procedure 23
4.1 Maintenance release upgrade . 23
4.2 Version 1.8 to 2.0 upgrade . 24

5 README 27
5.1 Requirements . 27
5.2 Setup . 29
5.3 Configuration directory . 30

6 The configuration file 31
6.1 The configuration file . 31

7 Usage instructions 43
7.1 Usage . 43

8 Module reference 47
8.1 global_lib api documentation . 47
8.2 mysql_lib api documentation . 47
8.3 pg_lib api documentation . 47
8.4 sql_util api documentation . 57

Python Module Index 61

Index 63

i

ii

pg_chameleon Documentation, Release v2.0.18

pg_chameleon is a replication tool from MySQL to PostgreSQL developed in Python 3.5+ The system use the library
mysql-replication to pull the row images from MySQL which are transformed into a jsonb object. A pl/pgsql function
decodes the jsonb and replays the changes into the PostgreSQL database.

The tool requires an initial replica setup which pulls the data from MySQL in read only mode.

pg_chameleon can pull the data from a cascading replica when the MySQL slave is configured with log-slave-updates.

Documentation available at pgchameleon.org

Release available via pypi

Contents 1

http://www.pgchameleon.org/documents/index.html
https://pypi.python.org/pypi/pg_chameleon/

pg_chameleon Documentation, Release v2.0.18

2 Contents

CHAPTER 1

FEATURES

• Replicates multiple MySQL schemas within the same MySQL cluster into a target PostgreSQL database. The
source and target schema names can be different.

• Conservative approach to the replica. Tables which generate errors are automatically excluded from the replica.

• Daemonised init_replica,refresh_schema,sync_tables processes.

• Daemonised replica process with two separated subprocess, one for the read and one for the replay.

• Soft replica initialisation. The tables are locked when needed and stored with their log coordinates. The replica
damon will put the database in a consistent status gradually.

• Rollbar integration for a simpler error detection and alerting.

3

pg_chameleon Documentation, Release v2.0.18

4 Chapter 1. FEATURES

CHAPTER 2

CHANGELOG

2.1 changelog

2.1.1 2.0.18 - 31 March 2022

• Support the ON DELETE and ON UPDATE clause when creating the foreign keys in PostgreSQL

• change logic for index and foreign key names by managing only duplicates within same schema

• use mysql-replication<0.27 as new versions crash when receiving queries

• add copy_schema method for copying only the schema without data (EXPERIMENTAL)

• change type for identifiers in replica schema to varchar(64)

2.1.2 2.0.17 - 30 January 2022

• Remove argparse from the requirements

• Add the collect for unique constraints when keep_existing_schema is Yes

• Fix wrong order in copy data/create indices when keep_existing_schema is No

• Remove check for log_bin we are replicating from Aurora MySQL

• Manage different the different behaviour in pyyaml to allow pg_chameleon to be installed as rpm in centos 7

2.1.3 2.0.16 - 23 September 2020

• Fix for issue #126 init_replica failure with tables on transactional engine and invalid data

5

pg_chameleon Documentation, Release v2.0.18

2.1.4 2.0.15 - 20 September 2020

• Support for reduced lock if MySQL engine is transactional, thanks to @rascalDan

• setup.py now requires python-mysql-replication to version 0.22 which adds support for PyMySQL >=0.10.0

• removed PyMySQL requirement <0.10.0 from setup.py

• prevent pg_chameleon to run as root

2.1.5 2.0.14 - 26 July 2020

• Add support for spatial data types (requires postgis installed on the target database)

• When keep_existing_schema is set to yes now drops and recreates indices, and constraints during the
init_replica process

• Fix for issue #115 thanks to @porshkevich

• setup.py now forces PyMySQL to version <0.10.0 because it breaks the python-mysql-replication library (issue
#117)

2.1.6 2.0.13 - 05 July 2020

• EXPERIMENTAL support for Point datatype - @jovankricka-everon

• Add keep_existing_schema in MySQL source type to keep the existing scema in place instead of re-
building it from the mysql source

• Change tabs to spaces in code

2.1.7 2.0.12 - 11 Dec 2019

• Fixes for issue #96 thanks to @daniel-qcode

• Change for configuration and SQL files location

• Package can build now as source and wheel

• The minimum python requirements now is 3.5

2.1.8 2.0.11 - 25 Oct 2019

• Fix wrong formatting for yaml example files. @rebtoor

• Make start_replica run in foreground when log_file == stdout . @clifff

• Travis seems to break down constantly, Disable the CI until a fix is found. Evaluate to use a different CI.

• Add the add loader to yaml.load as required by the new PyYAML version.

2.1.9 2.0.10 - 01 Sep 2018

• Fix regression in new replay function with PostgreSQL 10

• Convert to string the dictionary entries pulled from a json field

• Let enable_replica to disable any leftover maintenance flag

6 Chapter 2. CHANGELOG

pg_chameleon Documentation, Release v2.0.18

• Add capture in CHANGE for tables in the form schema.table

2.1.10 2.0.9 - 19 Aug 2018

• Fix wrong check for the next auto maintenance run if the maintenance wasn’t run before

• Improve the replay function’s speed

• Remove blocking from the GTID operational mode

2.1.11 2.0.8 - 14 Jul 2018

• Add support for skip events as requested in issue #76. Is now possible to skip events (insert,delete,update) for
single tables or for entire schemas.

• EXPERIMENTAL support for the GTID. When configured on MySQL or Percona server pg_chameleon will
use the GTID to auto position the replica stream. Mariadb is not supported by this change.

• ALTER TABLE RENAME is now correctly parsed and executed

• Add horrible hack to ALTER TABLE MODIFY. Previously modify with default values would parse wrongly
and fail when translating to PostgreSQL dialect

• Disable erroring the source when running with --debug switch enabled

• Add cleanup for logged events when refreshing schema and syncing tables. previously spurious logged events
could lead to primary key violations when syncing single tables or refreshing single schemas.

2.1.12 2.0.7 - 19 May 2018

• Fix for issue #71, make the multiprocess logging safe. Now each replica process logs in a separate file

• Fix the --full option to store true instead of false. Previously the option had no effect.

• Add auto_maintenance optional parameter to trigger a vacuum over the log tables after a specific timeout

• Fix for issue #75, avoid the wrong conversion to string for None keys when cleaning up malformed rows during
the init replica and replica process

• Fix for issue #73, fix for wrong data type tokenisation when an alter table adds a column with options (e.g. ADD
COLUMN foo DEFAULT NULL)

• Fix wrong TRUNCATE TABLE tokenisation if the statement specifies the table with the schema.

2.1.13 2.0.6 - 29 April 2018

• fix for issue #69 add source’s optional parameter on_error_read: to allow the read process to continue in
case of connection issues with the source database (e.g. MySQL in maintenance)

• remove the detach partition during the maintenance process as this proved to be a very fragile approach

• add switch --full to run a VACUUM FULL during the maintenance

• when running the maintentenance execute a VACUUM instead of a VACUUM FULL

• fix for issue #68. fallback to binlog_row_image=FULL if the parameter is missing in mysql 5.5.

• add cleanup for default value NOW() when adding a new column with ALTER TABLE

2.1. changelog 7

pg_chameleon Documentation, Release v2.0.18

• allow enable_replica to reset the source status in the case of a catalogue version mismatch

2.1.14 2.0.5 - 25 March 2018

• fix wrong exclusion when running sync_tables with limit_tables set

• add run_maintenance command to perform a VACUUM FULL on the source’s log tables

• add stop_all_replicas command to stop all the running sources within the target postgresql database

2.1.15 2.0.4 - 04 March 2018

• Fix regression added in 2.0.3 when handling MODIFY DDL

• Improved handling of dropped columns during the replica

2.1.16 2.0.3 - 11 February 2018

• fix regression added by commit 8c09ccb. when ALTER TABLE ADD COLUMN is in the form datatype DE-
FAULT (NOT) NULL the parser captures two words instead of one

• Improve the speed of the cleanup on startup deleting only for the source’s log tables instead of the parent table

• fix for issue #63. change the field i_binlog_position to bigint in order to avoid an integer overflow error when
the binlog is largher than 2 GB.

• change to psycopg2-binary in install_requires. This change will ensure the psycopg2 will install using the wheel
package when available.

• add upgrade_catalogue_v20 for minor schema upgrades

2.1.17 2.0.2 - 21 January 2018

• Fix for issue #61, missing post replay cleanup for processed batches.

• add private method _swap_enums to the class pg_engine which moves the enumerated types from the
loading to the destination schema.

2.1.18 2.0.1 - 14 January 2018

• Fix for issue #58. Improve the read replica performance by filtering the row images when limit_tables/
skip_tables are set.

• Make the read_replica_stream method private.

• Fix read replica crash if in alter table a column was defined as character varying

2.1.19 2.0.0 - 01 January 2018

• Add option --rollbar-level to set the maximum level for the messages to be sent to rollbar. Accepted
values: “critical”, “error”, “warning”, “info”. The Default is “info”.

• Add command enable_replica used to reset the replica status in case of error or unespected crash

• Add script alias chameleon along with chameleon.py

8 Chapter 2. CHANGELOG

pg_chameleon Documentation, Release v2.0.18

2.1.20 2.0.0.rc1 - 24 December 2017

• Fix for issue #52, When adding a unique key the table’s creation fails because of the NULLable field

• Add check for the MySQL configuration when initialising or refreshing replicated entities

• Add class rollbar_notifier for simpler message management

• Add end of init_replica,refresh_schema,sync_tables notification to rollbar

• Allow --tables disabled when syncing the tables to re synchronise all the tables excluded from the
replica

2.1.21 2.0.0.beta1 - 10 December 2017

• fix a race condition where an unrelated DDL can cause the collected binlog rows to be added several times to
the log_table

• fix regression in write ddl caused by the change of private method

• fix wrong ddl parsing when a column definition is surrounded by parentheses e.g. ALTER TABLE foo ADD
COLUMN(bar varchar(30));

• error handling for wrong table names, wrong schema names, wrong source name and wrong commands

• init_replica for source pgsql now can read from an hot standby but the copy is not consistent

• init_replica for source pgsql adds “replicated tables” for better show_status display

• check if the source is registered when running commands that require a source name

2.1.22 2.0.0.alpha3 - 03 December 2017

• Remove limit_tables from binlogreader initialisation, as we can read from multiple schemas we should only
exclude the tables not limit

• Fix wrong formatting for default value when altering a field

• Add upgrade procedure from version 1.8.2 to 2.0

• Improve error logging and table exclusion in replay function

• Add stack trace capture to the rollbar and log message when one of the replica daemon crash

• Add on_error_replay to set whether the replay process should skip the tables or exit on error

• Add init_replica support for source type pgsql (EXPERIMENTAL)

2.1.23 2.0.0.alpha2 - 18 November 2017

• Fix wrong position when determining the destination schema in read_replica_stream

• Fix wrong log position stored in the source’s high watermark

• Fix wrong table inclusion/exclusion in read_replica_steam

• Add source parameter replay_max_rows to set the amount of rows to replay. Previously the value was set
by replica_batch_size

• Fix crash when an alter table affected a table not replicated

• Fixed issue with alter table during the drop/set default for the column (thanks to psycopg2’s sql.Identifier)

2.1. changelog 9

pg_chameleon Documentation, Release v2.0.18

• add type display to source status

• Add fix for issue #33 cleanup NUL markers from the rows before trying to insert them in PostgreSQL

• Fix broken save_discarded_row

• Add more detail to show_status when specifying the source with –source

• Changed some methods to private

• ensure the match for the alter table’s commands are enclosed by word boundaries

• add if exists when trying to drop the table in swap tables. previously adding a new table failed because the table
wasn’t there

• fix wrong drop enum type when adding a new field

• add log error for storing the errors generated during the replay

• add not functional class pgsql_source for source type pgsql

• allow type_override to be empty

• add show_status command for displaying the log error entries

• add separate logs for per source

• change log line formatting inspired by the super clean look in pgbackrest (thanks you guys)

2.1.24 2.0.0.alpha1 - 11 November 2017

• Python 3 only development

• Add support for reading from multiple MySQL schemas and restore them it into a target PostgreSQL database.
The source and target schema names can be different.

• Conservative approach to the replica. Tables which generate errors are automatically excluded from the replica.

• Daemonised init_replica process.

• Daemonised replica process with two separated subprocess, one for the read and one for the replay.

• Soft replica initialisation. The tables are locked when needed and stored with their log coordinates. The replica
damon will put the database in a consistent status gradually.

• Rollbar integration for a simpler error detection.

10 Chapter 2. CHANGELOG

CHAPTER 3

RELEASE NOTES

3.1 RELEASE NOTES

3.1.1 2.0.18

This maintenance release adds the following bugfix and improvements.

Adds a new method copy_schema to copy only the schema without the data (EXPERIMENTAL).

Adds the support for the ON DELETE and ON UPDATE clause when creating the foreign keys in PostgreSQL with
detach_replica and copy_schema.

When running init_replica or copy_schema the names for the indices and foreign keys are preserved. Only if there is
any duplicate name then pg_chameleon will ensure that the names on PostgreSQL are unique within the same schema.

Adds a workaround for a regression introduced in mysql-replication by forcing the version to be lesser than 0.27.

Change the data type for the identifiers stored into the replica schema to varchar(64)

This release requires a replica catalogue upgrade, therefore is very important to follow the upgrade instructions pro-
vided below.

• If working via ssh is suggested to use screen or tmux for the upgrade

• Stop all the replica processes with chameleon stop_all_replicas --config <your_config>

• Take a backup of the schema sch_chameleon with pg_dump as a good measure.

• Install the upgrade with pip install pg_chameleon --upgrade

• Check if the version is upgraded with chameleon --version

• Upgrade the replica schema with the command chameleon upgrade_replica_schema --config
<your_config>

• Start all the replicas.

11

pg_chameleon Documentation, Release v2.0.18

3.1.2 2.0.17

This maintenance release adds the following bugfix.

Fix the wrong order in copy data/create indices when keep_existing_schema is No.

Previously the indices were created before the data was loaded into the target schema with great performance degra-
dation.

This fix applies only if the parameter keep_existing_schema is set to No.

Add the collect for unique constraints when keep_existing_schema is Yes.

Previously the unique constraint were not collected or dropped if defined as constraints instead of indices.

This fix applies only if the parameter keep_existing_schema is set to Yes.

This release adds the following changes:

• Remove argparse from the requirements as now it’s part of the python3 core dist

• Remove check for log_bin when we replicate from Aurora MySQL

• Manage different the different behaviour in pyyaml to allow pg_chameleon to be installed as rpm in centos 7
via pgdg repository

This release works with Aurora MySQL. However Aurora MySQL 5.6 segfaults when FLUSH TABLES WITH READ
LOCK is issued.

The replica is tested on Aurora MySQL 5.7.

This release requires a replica catalogue upgrade, therefore is very important to follow the upgrade instructions pro-
vided below.

• If working via ssh is suggested to use screen or tmux for the upgrade

• Stop all the replica processes with chameleon stop_all_replicas --config <your_config>

• Take a backup of the schema sch_chameleon with pg_dump as a good measure.

• Install the upgrade with pip install pg_chameleon --upgrade

• Check if the version is upgraded with chameleon --version

• Upgrade the replica schema with the command chameleon upgrade_replica_schema --config
<your_config>

• Start all the replicas.

3.1.3 2.0.16

This maintenance release fix a crash in init_replica caused by an early disconnection during the fallback on insert.
This caused the end of transaction to crash aborting the init_replica entirely.

3.1.4 2.0.15

This maintenance release adds the support for reduced lock if MySQL engine is transactional, thanks to @rascalDan.

The init_replica process checks whether the engine for the table is transactional and runs the initial copy within a
transaction. The process still requires a FLUSH TABLES WITH READ LOCK but the lock is released as soon as
the transaction snapshot is acquired. This improvement allows pg_chameleon to run agains primary databases with
minimal impact during the init_replica process.

12 Chapter 3. RELEASE NOTES

pg_chameleon Documentation, Release v2.0.18

The python-mysql-replication requirement is now changed to version >=0.22. This release adds support for PyMySQL
>=0.10.0. The requirement for PyMySQL to version <0.10.0 is therefore removed from setup.py.

From this version pg_chameleon refuse to run as root.

3.1.5 2.0.14

This maintenance release improves the support for spatial datatypes. When postgis is installed on the target database
then the spatial data types point,‘‘geometry‘‘,‘‘linestring‘‘,‘‘polygon‘‘, multipoint, multilinestring,
geometrycollection are converted to geometry and the data is replicated using the Well-Known Binary (WKB)
Format. As the MySQL implementation for WKB is not standard pg_chameleon removes the first 4 bytes from the
decoded binary data before sending it to PostgreSQL.

When keep_existing_schema is set to yes now drops and recreates indices, and primary keys during the
init_replica process. The foreign keys are dropped as well and recreated when the replica reaches the consistent
status. This way the init_replica may complete successfully even when there are foreign keys in place and with
the same speed of the usual init_replica.

The setup.py now forces PyMySQL to version <0.10.0 because it breaks the python-mysql-replication library (issue
#117).

Thanks to @porshkevich which fixed issue #115 by trim the space from PK index name.

This release requires a replica catalogue upgrade, therefore is very important to follow the upgrade instructions pro-
vided below.

• If working via ssh is suggested to use screen or tmux for the upgrade

• Stop all the replica processes with chameleon stop_all_replicas --config <your_config>

• Take a backup of the schema sch_chameleon with pg_dump as a good measure.

• Install the upgrade with pip install pg_chameleon --upgrade

• Check if the version is upgraded with chameleon --version

• Upgrade the replica schema with the command chameleon upgrade_replica_schema --config
<your_config>

• Start all the replicas.

If the upgrade procedure can’t upgrade the replica catalogue because of running or errored replicas is it possible to
reset the statuses by using the command chameleon enable_replica --source <source_name>.

If the catalogue upgrade is still not possible then you can downgrade pgchameleon to the previous version. Please note
that you may need to install manually PyMySQL to fix the issue with the version 0.10.0.

pip install pg_chameleon==2.0.13

pip install "PyMySQL<0.10.0"

3.1.6 2.0.13

This maintenance release adds the EXPERIMENTAL support for Point datatype thanks to the contribution by
@jovankricka-everon.

The support is currently limited to only the POINT datatype with hardcoded stuff to keep the init_replica and the
replica working. However as this feature is related with PostGIS, the next point release will rewrite this part of code
using a more general approach.

3.1. RELEASE NOTES 13

pg_chameleon Documentation, Release v2.0.18

The release adds the keep_existing_schema parameter in the MySQL source type. When set to Yes
init_replica,refresh_schema and sync_tables do not recreate the affected tables using the data from the MySQL source.
Instead the existing tables are truncated and the data is reloaded.

A REINDEX TABLE is executed in order to have the indices in good shape after the reload. The next point release
will very likely improve the approach on the reload and reindexing.

When keep_existing_schema is set to Yes the parameter grant_select_to have no effect.

From this release the codebase switched from tabs to spaces, following the guidelines in PEP-8.

3.1.7 2.0.12

This maintenance release fixes the issue #96 where the replica initialisation failed on MySQL 8 because of the wrong
field names pulled out from the information_schema. Thanks to @daniel-qcode for contributing with his fix.

The configuration and SQL files are now moved inside into the directory pg_chameleon. This change simplifies the
setup.py file and allow pg_chameleon to be built as source and wheel package.

As python 3.4 has now reached its end-of-life and has been retired the minimum requirement for pg_chameleon has
been updated to Python 3.5.

3.1.8 2.0.11

This maintenance release fixes few things. As reported in #95 the yaml filles were not completely valid. @rebtoor
fixed them.

@clifff made a pull request to have the start_replica running in foreground when log_file set to stdout. Previously the
process remained in background with the log set to stdout.

As Travis seems to break down constantly the CI configuration is disabled until a fix or a different CI is found .

Finally the method which loads the yaml file is now using an explicit loader as required by the new PyYAML version.

Previously with newer version of PyYAML there was a warning emitted by the library because the default loader is
unsafe. If you have

3.1.9 2.0.10

This maintenance release fixes a regression caused by the new replay function with PostgreSQL 10. The unnested pri-
mary key was put in cartesian product with the json elements generating NULL identifiers which made the subsequent
format function to fail.

This release fixes adds a workaround for decoding the keys in the mysql’s json fields. This allows the sytem to replicate
the json data type as well.

The command enable_replica fixes a race condition when the maintenance flag is not returned to false (e.g. an
application crash during the maintenance run) allowing the replica to start again.

The tokeniser for the CHANGE statement now parses the tables in the form of schema.table. However the to-
kenised schema is not used to determine the query’s schema because the __read_replica_stream method uses
the schema name pulled out from the mysql’s binlog.

As this change requires a replica catalogue upgrade is very important to follow the upgrade instructions provided
below.

• If working via ssh is suggested to use screen or tmux for the upgrade

• Stop all the replica processes with chameleon stop_all_replicas --config <your_config>

14 Chapter 3. RELEASE NOTES

pg_chameleon Documentation, Release v2.0.18

• Take a backup of the schema sch_chameleon with pg_dump for good measure.

• Install the upgrade with pip install pg_chameleon --upgrade

• Check if the version is upgraded with chameleon --version

• Upgrade the replica schema with the command chameleon upgrade_replica_schema --config
<your_config>

• Start all the replicas.

If the upgrade procedure refuses to upgrade the catalogue because of running or errored replicas is possible to reset
the statuses using the command chameleon enable_replica --source <source_name>.

If the catalogue upgrade is still not possible downgrading pgchameleon to the previous version. E.g. pip install
pg_chameleon==2.0.9 will make the replica startable again.

3.1.10 2.0.9

This maintenance release fixes a wrong check for the next auto maintenance run if the maintenance wasn’t run before.
Previously when changing the value of auto_maintenance from disabled to an interval, the process didn’t run the
automatic maintenance unless a manual maintenance was executed before.

This release adds improvements on the replay function’s speed. The new version is now replaying the data without
accessing the parent log partition and the decoding logic has been simplified. Not autoritative tests has shown a cpu
gain of at least 10% and a better memory allocation. However your mileage may vary.

The GTID operational mode has been improved removing the blocking mode which caused increased lag in systems
with larger binlog size.

As this change requires a replica catalogue upgrade is very important to follow the upgrade instructions provided
below.

• If working via ssh is suggested to use screen or tmux for the upgrade

• Stop all the replica processes with chameleon stop_all_replicas --config <your_config>

• Take a backup of the schema sch_chameleon with pg_dump for good measure.

• Install the upgrade with pip install pg_chameleon --upgrade

• Check if the version is upgraded with chameleon --version

• Upgrade the replica schema with the command chameleon upgrade_replica_schema --config
<your_config>

• Start all the replicas.

If the upgrade procedure refuses to upgrade the catalogue because of running or errored replicas is possible to reset
the statuses using the command chameleon enable_replica --source <source_name>.

If the catalogue upgrade is still not possible downgrading pgchameleon to the previous version. E.g. pip install
pg_chameleon==2.0.8 will make the replica startable again.

3.1.11 2.0.8

This maintenance release adds the support for skip events. Is now is possible to skip events (insert,delete,update) for
single tables or for entire schemas.

A new optional source parameter skip_events: is available for the sources with type mysql. Under skip events
there are three keys one per each DML operation. Is possible to list an entire schema or single tables in the form of

3.1. RELEASE NOTES 15

pg_chameleon Documentation, Release v2.0.18

schema.table. The example snippet disables the inserts on the table delphis_mediterranea.foo and the
deletes on the entire schema delphis_mediterranea.

skip_events:
insert:
- delphis_mediterranea.foo #skips inserts on the table delphis_mediterranea.foo

delete:
- delphis_mediterranea #skips deletes on schema delphis_mediterranea

update:

The release 2.0.8 adds the EXPERIMENTAL support for the GTID for MySQL or Percona server. The GTID in
MariaDb is currently not supported. A new optional parameter gtid_enable: which defaults to No is available for
the source type mysql.

When MySQL is configured with the GTID and the parameter gtid_enable: is set to Yes, pg_chameleon will use
the GTID to auto position the replica stream. This allows pg_chameleon to reconfigure the source within the MySQL
replicas without the need to run init_replica.

This feature has been extensively tested but as it’s new has to be considered EXPERIMENTAL.

ALTER TABLE RENAME is now correctly parsed and executed. ALTER TABLE MODIFY is now parsed correctly
when the field have a default value. Previously modify with default values would parse wrongly and fail when trans-
lating to PostgreSQL dialect

The source no longer gets an error state when running with --debug.

The logged events are now cleaned when refreshing schema and syncing tables. Previously spurious logged events
could lead to primary key violations when syncing single tables or refreshing single schemas.

As this change requires a replica catalogue upgrade is very important to follow the upgrade instructions provided
below.

• If working via ssh is suggested to use screen or tmux for the upgrade

• Stop all the replica processes with chameleon stop_all_replicas --config <your_config>

• Take a backup of the schema sch_chameleon with pg_dump for good measure.

• Install the upgrade with pip install pg_chameleon --upgrade

• Check if the version is upgraded with chameleon --version

• Upgrade the replica schema with the command chameleon upgrade_replica_schema --config
<your_config>

• Start all the replicas.

If the upgrade procedure refuses to upgrade the catalogue because of running or errored replicas is possible to reset
the statuses using the command chameleon enable_replica --source <source_name>.

If the catalogue upgrade is still not possible downgrading pgchameleon to the previous version. E.g. pip install
pg_chameleon==2.0.7 will make the replica startable again.

3.1.12 2.0.7

This maintenance release makes the multiprocess logging safe. Now each replica process logs in a separate file.

The --full option now is working. Previously the option had no effect causing the maintenance to run always a
conventional vacuum.

This release fixes the issues reported in ticket #73 and #75 by pg_chameleon’s users.

16 Chapter 3. RELEASE NOTES

https://dev.mysql.com/doc/refman/8.0/en/replication-gtids-concepts.html

pg_chameleon Documentation, Release v2.0.18

The bug reported in ticket #73 caused a wrong data type tokenisation when an alter table adds a column with options
(e.g. ADD COLUMN foo DEFAULT NULL)

The bug reported in ticket #75 , caused a wrong conversion to string for the row keys with None value during the
cleanup of malformed rows for the init replica and the replica process.

A fix for the TRUNCATE TABLE tokenisation is implemented as well. Now if the statement specifies the table with
the schema the truncate works properly.

A new optional source’s parameter is added. auto_maintenance trigger a vacuum on the log tables after a specific
timeout. The timeout shall be expressed like a PostgreSQL interval (e.g. “1 day”). The special value “disabled”
disables the auto maintenance. If the parameter is omitted the auto maintenance is disabled.

3.1.13 2.0.6

The maintenance release 2.0.6 fixes a crash occurring when a new column is added on the source database with the
default value NOW().

The maintenance introduced in the version 2.0.5 is now less aggressive. In particular the run_maintenance com-
mand now executes a conventional VACUUM on the source’s log tables, unless the switch --full is specified. In
that case a VACUUM FULL is executed. The detach has been disabled and may be completely removed in the future
releases because very fragile and prone to errors.

However running VACUUM FULL on the log tables can cause the other sources to be blocked during the maintenance
run.

This release adds an optional parameter on_error_read: on the mysql type’s sources which allow the read process
to stay up if the mysql database is refusing connections (e.g. MySQL down for maintenance). Following the principle
of least astonishment the parameter if omitted doesn’t cause any change of behaviour. If added with the value continue
(e.g. on_error_read: continue) will prevent the replica process to stop in the case of connection issues from
the MySQL database with a warning is emitted on the replica log .

This release adds the support for mysql 5.5 which doesn’t have the parameter binlog_row_image.

enable_replica now can reset the replica status to stopped even if the catalogue version is mismatched. This
simplifies the upgrade procedure in case of errored or wrongly running replicas.

As this change requires a replica catalogue upgrade is very important to follow the upgrade instructions provided
below.

• If working via ssh is suggested to open a screen session

• Before upgrading pg_chameleon stop all the replica processes.

• Upgrade the pg_chameleon package with pip install pg_chameleon –upgrade

• Upgrade the replica schema with the command chameleon upgrade_replica_schema –config <your_config>

• Start the replica processes

If the upgrade procedure refuses to upgrade the catalogue because of running or errored replicas is possible to reset
the statuses with the enable_replica command.

If the catalogue upgrade is still not possible downgrading pgchameleon to the version 2.0.5 with pip install
pg_chameleon==2.0.5 should make the replicas startable again.

3.1.14 2.0.5

The maintenance release 2.0.5 fixes a regression which prevented some tables to be synced with sync_tables when
the parameter limit_tables was set. Previously having two or more schemas mapped with only one schema listed in

3.1. RELEASE NOTES 17

pg_chameleon Documentation, Release v2.0.18

limit_tables prevented the other schema’s tables to be synchronised with sync_tables.

This release add two new commands to improve the general performance and the management.

The command stop_all_replicas stops all the running sources within the target postgresql database.

The command run_maintenance performs a VACUUM FULL on the specified source’s log tables. In order to limit
the impact on other sources eventually configured the command performs the following steps.

• The read and replay processes for the given source are paused

• The log tables are detached from the parent table sch_chameleon.t_log_replica with the command NO INHERIT

• The log tables are vacuumed with VACUUM FULL

• The log tables are attached to the parent table sch_chameleon.t_log_replica with the command INHERIT

• The read and replay processes are resumed

Currently the process is manual but it will become eventually automated if it’s proven to be sufficiently robust.

The pause for the replica processes creates the infrastructure necessary to have a self healing replica. This functionality
will appear in future releases of the branch 2.0.

As this change requires a replica catalogue upgrade is very important to follow the upgrade instructions provided
below.

• If working via ssh is suggested to open a screen session

• Before the upgrade stop all the replica processes.

• Upgrade pg_chameleon with pip install pg_chameleon –upgrade

• Run the upgrade command chameleon upgrade_replica_schema –config <your_config>

• Start the replica processes

3.1.15 2.0.4

The maintenance release 2.0.4 fix the wrong handling of the ALTER TABLEwhen generating the MODIFY translation.
The regression was added in the version 2.0.3 and can result in a broken replica process.

This version improves the way to handle the replica from tables with dropped columns in the future. The python-
mysql-replication library with this commit adds a way to manage the replica with the tables having columns dropped
before the read replica is started.

Previously the auto generated column name caused the replica process to crash as the type map dictionary didn’t had
the corresponding key.

The version 2.0.4 handles the KeyError exception and allow the row to be stored on the PostgreSQL target database.
However this will very likely cause the table to be removed from the replica in the replay step. A debug log message
is emitted when this happens in order to when the issue occurs.

3.1.16 2.0.3

The bugfix release 2.0.3 fixes the issue #63 changeing all the fields i_binlog_position to bigint. Previously binlog files
larger than 2GB would cause an integer overflow during the phase of write rows in the PostgreSQL database. The
issue can affect also MySQL databases with smaller max_binlog_size as it seems that this value is a soft limit.

As this change requires a replica catalogue upgrade is very important to follow the upgrade instructions provided
below.

• If working via ssh is suggested to open a screen session

18 Chapter 3. RELEASE NOTES

https://github.com/noplay/python-mysql-replication/commit/4c48538168f4cd3239563393a29b542cc6ffcf4b
https://github.com/noplay/python-mysql-replication/commit/4c48538168f4cd3239563393a29b542cc6ffcf4b

pg_chameleon Documentation, Release v2.0.18

• Before the upgrade stop all the replica processes.

• Upgrade pg_chameleon with pip install pg_chameleon –upgrade

• Run the upgrade command chameleon upgrade_replica_schema –config <your_config>

• Start the replica processes

Please note that because the upgrade command will alter the data types with subsequent table rewrite. The process can
take long time, in particular if the log tables are large. If working over a remote machine the best way to proceed is to
run the command in a screen session.

This release fixes a regression introduced with the release 2.0.1. When an alter table comes in the form of ALTER
TABLE ADD COLUMN is in the form datatype DEFAULT (NOT) NULL the parser captures two words instead of one,
causing the replica process crash.

The speed of the initial cleanup, when the replica starts has been improved as now the delete runs only on the sources
log tables instead of the parent table. This improvement is more effective when many sources are configured all
togheter.

From this version the setup.py switches the psycopg2 requirement to using the psycopg2-binary which ensures that
psycopg2 will install using the wheel package when available.

3.1.17 2.0.2

This bugfix relase adds a missing functionality which wasn’t added during the application development and fixes a
bug in the sync_tables command.

Previously the parameter batch_retention was ignored making the replayed batches to accumulate in the table
sch_chameleon.t_replica_batch with the conseguent performance degradation over time.

This release solves the issue re enabling the batch_retention. Please note that after upgrading there will be an initial
replay lag building. This is normal as the first cleanup will have to remove a lot of rows. After the cleanup is complete
the replay will resume as usual.

The new private method _swap_enums added to the class pg_engine moves the enumerated types from the load-
ing schema to the destination schema when the method swap_tables is executed by the command sync_tables.

Previously when running sync_tables tables with enum fields were created on PostgreSQL without the corre-
sponding enumerated types. This happened because the custom enumerated type were not moved into the destination
schema and therefore dropped along with the loading schema when the procedure performed the final cleanup.

3.1.18 2.0.1

The first maintenance release of pg_chameleon v2 adds a performance improvement in the read replica process when
the variables limit_tables or skip_tables are set.

Previously all the rows were read from the replica stream as the BinLogStreamReader do not allow the usage
of the tables in the form of schema_name.table_name. This caused a large amount of useless data hitting the
replica log tables as reported in the issue #58.

The private method __store_binlog_event now evaluates the row schema and table and returns a boolean value
on whether the row or query should be stored or not into the log table.

The release fixes also a crash in read replica if an alter table added a column was of type character varying.

3.1. RELEASE NOTES 19

pg_chameleon Documentation, Release v2.0.18

3.1.19 2.0.0

This stable release consists of the same code of the RC1 with few usability improvements.

A new option is now available to set to set the maximum level for the messages to be sent to rollbar. This is quite
useful if we configure a periodical init_replica (e.g. pgsql source type refreshed every hour) and we don’t want to
fill rollbar with noise. For example chameleon init_replica --source pgsql --rollbar-level
critical will send to rollbar only messages marked as critical.

There is now a command line alias chameleon which is a wrapper for chameleon.py.

A new command enable_replica is now available to enable the source’s replica if the source is not stopped clean.

3.1.20 2.0.0.rc1

This release candidate comes with few bug fixes and few usability improvements.

Previously when adding a table with a replicated DDL having an unique key, the table’s creation failed because of the
fields were set as NULLable . Now the command works properly.

The system now checks if the MySQL configuration allows the replica when initialising or refreshing replicated
entities.

A new class rollbar_notifier was added in order to simplyfi the message management within the source and
engine classes.

Now the commands init_replica,refresh_schema,sync_tables send an info notification to rollbar
when they complete successfully or an error if they don’t.

The command sync_tables now allows the special name --tables disabled to have all the tables with
replica disabled re synchronised at once.

3.1.21 2.0.0.beta1

The first beta for the milestone 2.0 adds fixes a long standing bug to the replica process and adds more features to the
postgresql support.

The race condition fixed was caused by a not tokenised DDL preceeded by row images, causing the collected binlog
rows to be added several times to the log_table. It was quite hard to debug as the only visible effect was a primary key
violation on random tables.

The issue is caused if a set of rows lesser than the replica_batch_size are followed by a DDL that is not
tokenised (e.g. CREATE TEMPORARY TABLE `foo`;) which coincides with the end of read from the binary log.
In that case the batch is not closed and the next read replica attempt will restart from the previous position reading
and storing again the same set of rows. When the batch is closed the replay function will eventually fail because of a
primary/unique key violation.

The tokeniser now works properly when an ALTER TABLE ADD COLUMN’s definition is surrounded by parentheses
e.g. ALTER TABLE foo ADD COLUMN(bar varchar(30)); There are now error handlers when wrong table
names, wrong schema names, wrong source name and wrong commands are specified to chameleon.py When
running commands that require a source name tye system checks if the source is registered.

The init_replica for source pgsql now can read from an hot standby but the copy is not consistent as it’s not
possible to export a snapshot from the hot standbys. Also the * init_replica for source pgsql adds the copied
tables as fake “replicated tables” for better show_status display.

For the source type pgsql the following restrictions apply.

• There is no support for real time replica

20 Chapter 3. RELEASE NOTES

pg_chameleon Documentation, Release v2.0.18

• The data copy happens always with file method

• The copy_max_memory doesn’t apply

• The type override doesn’t apply

• Only init_replica is currently supported

• The source connection string requires a database name

3.1.22 2.0.0.alpha3

please note this is a not production release. do not use it in production

The third and final alpha3 for the milestone 2.0 fixes some issues and add more features to the system.

As there are changes in the replica catalog if upgrading from the alpha1 there will be need to do a
drop_replica_schema followed by a create_replica_schema. This will drop any existing replica and
will require re adding the sources and re initialise them with init_replica.

The system now supports a source type pgsql with the following limitations.

• There is no support for real time replica

• The data copy happens always with file method

• The copy_max_memory doesn’t apply

• The type override doesn’t apply

• Only init_replica is currently supported

• The source connection string requires a database name

• In the show_status detailed command the replicated tables counters are always zero

A stack trace capture is now added on the log and the rollbar message for better debugging. A new parameter
on_error_replay is available for the sources to set whether the replay process should skip the tables or exit
on error.

This release adds the command upgrade_replica_schema for upgrading the replica schema from the version
1.8 to the 2.0.

The upgrade procedure is described in the documentation.

Please read it carefully before any upgrade and backup the schema sch_chameleon before attempting any
upgrade.

3.1.23 2.0.0.alpha2

please note this is a not production release. do not use it in production

The second alpha of the milestone 2.0 comes after a week of full debugging. This release is more usable and stable
than the alpha1. As there are changes in the replica catalog if upgrading from the alpha1 there will be need to do a
drop_replica_schema followed by a create_replica_schema. This will drop any existing replica and
will require re adding the sources and re initialise them with init_replica.

The full list of changes is in the CHANGELOG file. However there are few notable remarks.

There is a detailed display of the show_status command when a source is specified. In particular the number of
replicated and not replicated tables is displayed. Also if any table as been pulled out from the replica it appears on the
bottom.

3.1. RELEASE NOTES 21

pg_chameleon Documentation, Release v2.0.18

From this release there is an error log which saves the exception’s data during the replay phase. The error log can be
queried with the new command show_errors.

A new source parameter replay_max_rows has been added to set the amount of rows to replay. Previously the
value was set by the parameter replica_batch_size. If upgrading from alpha1 you may need to add this param-
eter to your existing configuration.

Finally there is a new class called pgsql_source, not yet functional though. This class will add a very basic support
for the postgres source type. More details will come in the alpha3.

3.1.24 2.0.0.alpha1

please note this is a not production release. do not use it in production

This is the first alpha of the milestone 2.0. The project has been restructured in many ways thanks to the user’s
feedback. Hopefully this will make the system much simple to use.

The main changes in the version 2 are the following.

The system is Python 3 only compatible. Python 3 is the future and there is no reason why to keep developing thing
in 2.7.

The system now can read from multiple MySQL schemas in the same database and replicate them it into a target
PostgreSQL database. The source and target schema names can be different.

The system now use a conservative approach to the replica. The tables which generate errors during the replay are
automatically excluded from the replica.

The init_replica process runs in background unless the logging is on the standard output or the debug option is passed
to the command line.

The replica process now runs in background with two separated subprocess, one for the read and one for the replay.
If the logging is on the standard output or the debug option is passed to the command line the main process stays in
foreground though.

The system now use a soft approach when initialising the replica . The tables are locked only when copied. Their log
coordinates will be used by the replica damon to put the database in a consistent status gradually.

The system can now use the rollbark key and environment to setup the Rollbar integration, for a better error detection.

22 Chapter 3. RELEASE NOTES

CHAPTER 4

Upgrade procedure

4.1 Maintenance release upgrade

Upgrading a maintenance release is in general very simple but requires some attention.

Always check the release notes. If there is no schema upgrade the procedure is straightforward

• Stop all the replica processes with chameleon stop_all_replicas --config <your_config>

• Install the upgrade with pip install pg_chameleon --upgrade

• Check if the version is upgraded with chameleon --version

• Start all the replicas.

If the release comes with a schema upgrade, after stopping the replicas take a backup of the schema
sch_chameleon with pg_dump for good measure.

pg_dump -h <your_database_server > -n sch_chameleon -Fc -f sch_chameleon.dmp
-U <your_username >-d <your_database>

• If working via ssh is suggested to use screen or tmux for the upgrade

• Upgrade the pg_chameleon package with pip install pg_chameleon --upgrade

• Upgrade the replica schema with the command chameleon upgrade_replica_schema --config
<your_config>

• Start the replica processes

If the upgrade procedure refuses to upgrade the catalogue because of running or errored replicas is possible to reset
the statuses using the command chameleon enable_replica --source <source_name>.

If the catalogue upgrade is still not possible downgrading pgchameleon to the previous version. E.g. pip install
pg_chameleon==2.0.7.

23

release_notes.html

pg_chameleon Documentation, Release v2.0.18

4.2 Version 1.8 to 2.0 upgrade

pg_chameleon 2.0 can upgrade an existing 1.8 replica catalogue using the command upgrade_replica_schema.
As the new version supports different schema mappings within the same source the parameter schema_mappings
must match all the pairs my_database destination_schema for the source database that we are configuring.
Any discrepancy will abort the upgrade procedure.

4.2.1 Preparation

• Check the pg_chameleon version you are upgrading is 1.8.2. If not upgrade it and start the replica for each source present in the old catalogue.
This step is required in order to have the destination and target schema’s updated from the configuration
files.

• Check the replica catalogue version is 1.7 with SELECT * FROM sch_chameleon.v_version;.

• Check the field t_source_schema have a schema name set SELECT t_source_schema FROM
sch_chameleon.t_sources;

• Take a backup of the existing schema sch_chameleon with pg_dump

• Install pg_chameleon version 2 and create the configuration files executing chameleon
set_configuration_files.

• cd in ~/.pg_chameleon/configuration/ and copy the file config-example.yml in a different
file e.g. cp config-example.yml upgraded.yml

• Edit the file and set the target and source’s database connections. You may want to change the source name as
well

For each configuration file in the old setup ~/.pg_chameleon/config/ using the MySQL database configured
in the source you should get the values stored in my_database and destination_schema and add it to the new
source’s schema_mappings.

For example, if there are two sources source_01.yaml and source_02.yaml with the following configuration:

Both sources are pointing the same MySQL database

mysql_conn:
host: my_host.foo.bar
port: 3306
user: my_replica

passwd: foo_bar

source_01.yaml have the following schema setup

my_database: my_schema_01
destination_schema: db_schema_01

source_02.yaml have the following schema setup

my_database: my_schema_02
destination_schema: db_schema_02

The new source’s database configuration should be

mysql:
db_conn:

host: "my_host.foo.bar"

(continues on next page)

24 Chapter 4. Upgrade procedure

pg_chameleon Documentation, Release v2.0.18

(continued from previous page)

port: "3306"
user: "my_replica"
password: "foo_bar"
charset: 'utf8'
connect_timeout: 10

schema_mappings:
my_schema_01: db_schema_01
my_schema_02: db_schema_02

4.2.2 Upgrade

Execute the following command chameleon upgrade_replica_schema --config upgraded

The procedure checks if the start catalogue version is 1.7 and fails if the value is different. After answering YES the
procedure executes the following steps.

• Replays any exising batches present in the catalogue 1.7

• Checks if the schema_mappings are compatible with the values stored in the schema sch_chameleon

• Renames the schema sch_chameleon to _sch_chameleon_version1

• Installs a new 2.0 schema in sch_chameleon

• Stores a new source using the schema mappings

• Migrates the existing tables into the new catalogue using the replica batch data to store the tables start of
consistent point.

• Determines maximum and minimum point for the binlog coordinates and use them for writing the new batch
start point and the source’s consistent point

If the migration is successful, before starting the replica process is better to check that all tables are correctly mapped
with

chameleon show_status --source upgraded

4.2.3 Rollback

If something goes wrong during the upgrade procedure, then the changes are rolled back. The
schema sch_chameleon is renamed to _sch_chameleon_version2 and the previous version’s schema
_sch_chameleon_version1 is put batck to sch_chameleon. If this happens the procedure 1.8.2 will continue
to work as usual. The schema _sch_chameleon_version2 can be used to check what went wrong.

Before attempting a new upgrade schema _sch_chameleon_version2 should be dropped or renamed in order
to avoid a schema conflict in the case of another failure.

4.2. Version 1.8 to 2.0 upgrade 25

pg_chameleon Documentation, Release v2.0.18

26 Chapter 4. Upgrade procedure

CHAPTER 5

README

pg_chameleon is a MySQL to PostgreSQL replica system written in Python 3. The system use the library mysql-
replication to pull the row images from MySQL which are stored into PostgreSQL as JSONB. A pl/pgsql function
decodes the jsonb values and replays the changes against the PostgreSQL database.

pg_chameleon 2.0 is available on pypi

The documentation is available on pgchameleon.org

Please submit your bug reports on GitHub.

5.1 Requirements

5.1.1 Replica host

Operating system: Linux, FreeBSD, OpenBSD Python: CPython 3.5+

• PyMySQL

• mysql-replication

• psycopg2

• PyYAML

• tabulate

27

https://github.com/the4thdoctor/pg_chameleon/issues
https://github.com/the4thdoctor/pg_chameleon/network
https://github.com/the4thdoctor/pg_chameleon/stargazers
https://raw.githubusercontent.com/the4thdoctor/pg_chameleon/master/LICENSE
https://github.com/the4thdoctor/pg_chameleon/releases
https://pypi.org/project/pg_chameleon
https://pypi.org/project/pg_chameleon/
http://www.pgchameleon.org/documents_v2/index.html
https://github.com/the4thdoctor/pg_chameleon
https://pypi.python.org/pypi/PyMySQL
https://pypi.python.org/pypi/mysql-replication
https://pypi.python.org/pypi/psycopg2
https://pypi.python.org/pypi/PyYAML
https://pypi.python.org/pypi/tabulate

pg_chameleon Documentation, Release v2.0.18

• rollbar

• daemonize

Optionals for building documentation

• sphinx

• sphinx-autobuild

5.1.2 Origin database

MySQL 5.5+

Aurora MySQL 5.7+

5.1.3 Destination database

PostgreSQL 9.5+

5.1.4 Example scenarios

• Analytics

• Migrations

• Data aggregation from multiple MySQL databases

5.1.5 Features

• Read from multiple MySQL schemas and restore them it into a target PostgreSQL database. The source and
target schema names can be different.

• Setup PostgreSQL to act as a MySQL slave.

• Support for enumerated and binary data types.

• Basic DDL Support (CREATE/DROP/ALTER TABLE, DROP PRIMARY KEY/TRUNCATE, RENAME).

• Discard of rubbish data coming from the replica.

• Conservative approach to the replica. Tables which generate errors are automatically excluded from the replica.

• Possibilty to refresh single tables or single schemas.

• Basic replica monitoring.

• Detach replica from MySQL for migration support.

• Data type override (e.g. tinyint(1) to boolean)

• Daemonised init_replica process.

• Daemonised replica process with two separated subprocess, one for the read and one for the replay.

• Rollbar integration

• Support for geometrical data. Requires PostGIS on the target database.

• Minimal locking during init_replica for transactional engines (e.g. innodb)

28 Chapter 5. README

https://pypi.python.org/pypi/rollbar
https://pypi.python.org/pypi/daemonize
http://www.sphinx-doc.org/en/stable/
https://github.com/GaretJax/sphinx-autobuild

pg_chameleon Documentation, Release v2.0.18

5.1.6 Caveats

The replica requires the tables to have a primary or unique key. Tables without primary/unique key are initialised
during the init_replica process but not replicated.

The copy_max_memory is just an estimate. The average rows size is extracted from mysql’s informations schema and
can be outdated. If the copy process fails for memory error check the failing table’s row length and the number of
rows for each slice.

Python 3 is supported only from version 3.5 as required by mysql-replication .

The lag is determined using the last received event timestamp and the postgresql timestamp. If the mysql is read only
the lag will increase because no replica event is coming in.

The detach replica process resets the sequences in postgres to let the database work standalone. The foreign keys from
the source MySQL schema are extracted and created initially as NOT VALID. The foreign keys are created without
the ON DELETE or ON UPDATE clauses. A second run tries to validate the foreign keys. If an error occurs it gets
logged out according to the source configuration.

5.2 Setup

5.2.1 RPM PGDG

pg_chameleon is included in the PGDG RMP repository thanks to Devrim.

Please follow the instructions on https://www.postgresql.org/download/linux/redhat/

5.2.2 openSUSE Build Service

pg_chameleon is available on the openSUSE build Service

Currently all releases are supported except SLE_12_SP5 because of unresolved dependencies.

5.2.3 Virtual env setup

• Create a virtual environment (e.g. python3 -m venv venv)

• Activate the virtual environment (e.g. source venv/bin/activate)

• Upgrade pip with pip install pip –upgrade

• Install pg_chameleon with pip install pg_chameleon.

• Create a user on mysql for the replica (e.g. usr_replica)

• Grant access to usr on the replicated database (e.g. GRANT ALL ON sakila.* TO ‘usr_replica’;)

• Grant RELOAD privilege to the user (e.g. GRANT RELOAD ON *.* to ‘usr_replica’;)

• Grant REPLICATION CLIENT privilege to the user (e.g. GRANT REPLICATION CLIENT ON *.* to
‘usr_replica’;)

• Grant REPLICATION SLAVE privilege to the user (e.g. GRANT REPLICATION SLAVE ON *.* to
‘usr_replica’;)

5.2. Setup 29

https://www.postgresql.org/download/linux/redhat/
https://build.opensuse.org/package/show/server:database:postgresql/pg_chameleon

pg_chameleon Documentation, Release v2.0.18

5.3 Configuration directory

The system wide install is now supported correctly.

The configuration is set with the command chameleon set_configuration_files in
$HOME/.pg_chameleon . Inside the directory there are three subdirectories.

• configuration is where the configuration files are stored.

• pid is where the replica pid file is created. it can be changed in the configuration file

• logs is where the replica logs are saved if log_dest is file. It can be changed in the configuration file

You should use config-example.yaml as template for the other configuration files. Check the configuration file refer-
ence for an overview.

30 Chapter 5. README

http://www.pgchameleon.org/documents_v2/configuration_file.html
http://www.pgchameleon.org/documents_v2/configuration_file.html

CHAPTER 6

The configuration file

6.1 The configuration file

The file config-example.yaml is stored in ~/.pg_chameleon/configuration and should be used as template for the
other configuration files. The configuration consists of three configuration groups.

6.1.1 Global settings

1 # global settings
2 pid_dir: '~/.pg_chameleon/pid/'
3 log_dir: '~/.pg_chameleon/logs/'
4 log_dest: file
5 log_level: info
6 log_days_keep: 10
7 rollbar_key: ''
8 rollbar_env: ''

• pid_dir directory where the process pids are saved.

• log_dir directory where the logs are stored.

• log_dest log destination. stdout for debugging purposes, file for the normal activity.

• log_level logging verbosity. allowed values are debug, info, warning, error.

• log_days_keep configure the retention in days for the daily rotate replica logs.

• rollbar_key: the optional rollbar key

• rollbar_env: the optional rollbar environment

If both rollbar_key and rollbar_env are configured some messages are sent to the rollbar conf

31

pg_chameleon Documentation, Release v2.0.18

6.1.2 type override

1 # type_override allows the user to override the default type conversion
2 # into a different one.
3

4 type_override:
5 "tinyint(1)":
6 override_to: boolean

The type_override allows the user to override the default type conversion into a different one. Each type key should
be named exactly like the mysql type to override including the dimensions. Each type key needs two subkeys.

• override_to specifies the destination type which must be a postgresql type and the type cast should be possible

• override_tables is a yaml list which specifies to which tables the override applies. If the first list item is set to
“*” then the override is applied to all tables in the replicated schemas.

The override is applied when running the init_replica,refresh_schema andsync_tables process. The override is also
applied for each matching DDL (create table/alter table) if the table name matches the override_tables values.

6.1.3 PostgreSQL target connection

1 # postgres destination connection
2 pg_conn:
3 host: "localhost"
4 port: "5432"
5 user: "usr_replica"
6 password: "never_commit_password"
7 database: "db_replica"
8 charset: "utf8"

The pg_conn key maps the target database connection string.

6.1.4 sources configuration

1 sources:
2 mysql:
3 db_conn:
4 host: "localhost"
5 port: "3306"
6 user: "usr_replica"
7 password: "never_commit_passwords"
8 charset: 'utf8'
9 connect_timeout: 10

10 schema_mappings:
11 delphis_mediterranea: loxodonta_africana
12 limit_tables:
13 - delphis_mediterranea.foo
14 skip_tables:
15 - delphis_mediterranea.bar
16 grant_select_to:
17 - usr_readonly
18 lock_timeout: "120s"
19 my_server_id: 100
20 replica_batch_size: 10000

(continues on next page)

32 Chapter 6. The configuration file

pg_chameleon Documentation, Release v2.0.18

(continued from previous page)

21 replay_max_rows: 10000
22 batch_retention: '1 day'
23 copy_max_memory: "300M"
24 copy_mode: 'file'
25 out_dir: /tmp
26 sleep_loop: 1
27 on_error_replay: continue
28 on_error_read: continue
29 auto_maintenance: "disabled"
30 gtid_enable: false
31 type: mysql
32 skip_events:
33 insert:
34 - delphis_mediterranea.foo # skips inserts on delphis_mediterranea.foo
35 delete:
36 - delphis_mediterranea # skips deletes on schema delphis_mediterranea
37 update:
38 keep_existing_schema: No
39

40 pgsql:
41 db_conn:
42 host: "localhost"
43 port: "5432"
44 user: "usr_replica"
45 password: "never_commit_passwords"
46 database: "db_replica"
47 charset: 'utf8'
48 connect_timeout: 10
49 schema_mappings:
50 loxodonta_africana: elephas_maximus
51 limit_tables:
52 - loxodonta_africana.foo
53 skip_tables:
54 - loxodonta_africana.bar
55 copy_max_memory: "300M"
56 grant_select_to:
57 - usr_readonly
58 lock_timeout: "10s"
59 my_server_id: 100
60 replica_batch_size: 3000
61 replay_max_rows: 10000
62 sleep_loop: 5
63 batch_retention: '1 day'
64 copy_mode: 'file'
65 out_dir: /tmp
66 type: pgsql

The key sources allow to setup multiple replica sources writing on the same postgresql database. The key name myst
be unique within the replica configuration.

The following remarks apply only to the mysql source type.

For the postgresql source type. See the last section for the description and the limitations.

6.1. The configuration file 33

pg_chameleon Documentation, Release v2.0.18

Database connection

1 sources:
2 mysql:
3 db_conn:
4 host: "localhost"
5 port: "3306"
6 user: "usr_replica"
7 password: "never_commit_passwords"
8 charset: 'utf8'
9 connect_timeout: 10

10 schema_mappings:
11 delphis_mediterranea: loxodonta_africana
12 limit_tables:
13 - delphis_mediterranea.foo
14 skip_tables:
15 - delphis_mediterranea.bar
16 grant_select_to:
17 - usr_readonly
18 lock_timeout: "120s"
19 my_server_id: 100
20 replica_batch_size: 10000
21 replay_max_rows: 10000
22 batch_retention: '1 day'
23 copy_max_memory: "300M"
24 copy_mode: 'file'
25 out_dir: /tmp
26 sleep_loop: 1
27 on_error_replay: continue
28 on_error_read: continue
29 auto_maintenance: "disabled"
30 gtid_enable: false
31 type: mysql
32 skip_events:
33 insert:
34 - delphis_mediterranea.foo # skips inserts on delphis_mediterranea.foo
35 delete:
36 - delphis_mediterranea # skips deletes on schema delphis_mediterranea
37 update:
38 keep_existing_schema: No

The db_conn key maps the target database connection string. Within the connection is possible to configure the
connect_timeout which is 10 seconds by default. Larger values could help the tool working better on slow networks.
Low values can cause the connection to fail before any action is performed.

Schema mappings

1 sources:
2 mysql:
3 db_conn:
4 host: "localhost"
5 port: "3306"
6 user: "usr_replica"
7 password: "never_commit_passwords"
8 charset: 'utf8'
9 connect_timeout: 10

(continues on next page)

34 Chapter 6. The configuration file

pg_chameleon Documentation, Release v2.0.18

(continued from previous page)

10 schema_mappings:
11 delphis_mediterranea: loxodonta_africana
12 limit_tables:
13 - delphis_mediterranea.foo
14 skip_tables:
15 - delphis_mediterranea.bar
16 grant_select_to:
17 - usr_readonly
18 lock_timeout: "120s"
19 my_server_id: 100
20 replica_batch_size: 10000
21 replay_max_rows: 10000
22 batch_retention: '1 day'
23 copy_max_memory: "300M"
24 copy_mode: 'file'
25 out_dir: /tmp
26 sleep_loop: 1
27 on_error_replay: continue
28 on_error_read: continue
29 auto_maintenance: "disabled"
30 gtid_enable: false
31 type: mysql
32 skip_events:
33 insert:
34 - delphis_mediterranea.foo # skips inserts on delphis_mediterranea.foo
35 delete:
36 - delphis_mediterranea # skips deletes on schema delphis_mediterranea
37 update:
38 keep_existing_schema: No

The key schema mappings is a dictionary. Each key is a MySQL database that needs to be replicated in PostgreSQL.
Each value is the destination schema in the PostgreSQL database. In the example provided the MySQL database
delphis_mediterranea is replicated into the schema loxodonta_africana stored in the database specified
in the pg_conn key (db_replica).

Limit and skip tables

1 sources:
2 mysql:
3 db_conn:
4 host: "localhost"
5 port: "3306"
6 user: "usr_replica"
7 password: "never_commit_passwords"
8 charset: 'utf8'
9 connect_timeout: 10

10 schema_mappings:
11 delphis_mediterranea: loxodonta_africana
12 limit_tables:
13 - delphis_mediterranea.foo
14 skip_tables:
15 - delphis_mediterranea.bar
16 grant_select_to:
17 - usr_readonly
18 lock_timeout: "120s"

(continues on next page)

6.1. The configuration file 35

pg_chameleon Documentation, Release v2.0.18

(continued from previous page)

19 my_server_id: 100
20 replica_batch_size: 10000
21 replay_max_rows: 10000
22 batch_retention: '1 day'
23 copy_max_memory: "300M"
24 copy_mode: 'file'
25 out_dir: /tmp
26 sleep_loop: 1
27 on_error_replay: continue
28 on_error_read: continue
29 auto_maintenance: "disabled"
30 gtid_enable: false
31 type: mysql
32 skip_events:
33 insert:
34 - delphis_mediterranea.foo # skips inserts on delphis_mediterranea.foo
35 delete:
36 - delphis_mediterranea # skips deletes on schema delphis_mediterranea
37 update:
38 keep_existing_schema: No

• limit_tables list with the tables to replicate. If the list is empty then the entire mysql database is replicated.

• skip_tables list with the tables to exclude from the replica.

The table’s names should be in the form SCHEMA_NAME.TABLE_NAME.

Grant select to option

1 sources:
2 mysql:
3 db_conn:
4 host: "localhost"
5 port: "3306"
6 user: "usr_replica"
7 password: "never_commit_passwords"
8 charset: 'utf8'
9 connect_timeout: 10

10 schema_mappings:
11 delphis_mediterranea: loxodonta_africana
12 limit_tables:
13 - delphis_mediterranea.foo
14 skip_tables:
15 - delphis_mediterranea.bar
16 grant_select_to:
17 - usr_readonly
18 lock_timeout: "120s"
19 my_server_id: 100
20 replica_batch_size: 10000
21 replay_max_rows: 10000
22 batch_retention: '1 day'
23 copy_max_memory: "300M"
24 copy_mode: 'file'
25 out_dir: /tmp
26 sleep_loop: 1
27 on_error_replay: continue

(continues on next page)

36 Chapter 6. The configuration file

pg_chameleon Documentation, Release v2.0.18

(continued from previous page)

28 on_error_read: continue
29 auto_maintenance: "disabled"
30 gtid_enable: false
31 type: mysql
32 skip_events:
33 insert:
34 - delphis_mediterranea.foo # skips inserts on delphis_mediterranea.foo
35 delete:
36 - delphis_mediterranea # skips deletes on schema delphis_mediterranea
37 update:
38 keep_existing_schema: No

This key allows to specify a list of database roles which will get select access on the replicate tables.

Source configuration parameters

1 sources:
2 mysql:
3 db_conn:
4 host: "localhost"
5 port: "3306"
6 user: "usr_replica"
7 password: "never_commit_passwords"
8 charset: 'utf8'
9 connect_timeout: 10

10 schema_mappings:
11 delphis_mediterranea: loxodonta_africana
12 limit_tables:
13 - delphis_mediterranea.foo
14 skip_tables:
15 - delphis_mediterranea.bar
16 grant_select_to:
17 - usr_readonly
18 lock_timeout: "120s"
19 my_server_id: 100
20 replica_batch_size: 10000
21 replay_max_rows: 10000
22 batch_retention: '1 day'
23 copy_max_memory: "300M"
24 copy_mode: 'file'
25 out_dir: /tmp
26 sleep_loop: 1
27 on_error_replay: continue
28 on_error_read: continue
29 auto_maintenance: "disabled"
30 gtid_enable: false
31 type: mysql
32 skip_events:
33 insert:
34 - delphis_mediterranea.foo # skips inserts on delphis_mediterranea.foo
35 delete:
36 - delphis_mediterranea # skips deletes on schema delphis_mediterranea
37 update:
38 keep_existing_schema: No

• lock_timeout the max time in seconds that the target postgresql connections should wait for acquiring a lock.

6.1. The configuration file 37

pg_chameleon Documentation, Release v2.0.18

This parameter applies to init_replica,refresh_schema and sync_tables when performing the relation’s swap.

• my_server_id the server id for the mysql replica. must be unique within the replica cluster

• replica_batch_size the max number of rows that are pulled from the mysql replica before a write on the post-
gresql database is performed. See caveats in README for a complete explanation.

• batch_retention the max retention for the replayed batches rows in t_replica_batch. The field accepts any valid
interval accepted by PostgreSQL

• copy_max_memory the max amount of memory to use when copying the table in PostgreSQL. Is possible to
specify the value in (k)ilobytes, (M)egabytes, (G)igabytes adding the suffix (e.g. 300M).

• copy_mode the allowed values are ‘file’ and ‘direct’. With direct the copy happens on the fly. With file the table
is first dumped in a csv file then reloaded in PostgreSQL.

• out_dir the directory where the csv files are dumped during the init_replica process if the copy mode is file.

• sleep_loop seconds between a two replica batches.

• on_error_replay specifies whether the replay process should exit or continue if any error during the replay
happens. If continue is specified the offending tables are removed from the replica.

• on_error_read specifies whether the read process should exit or continue if a connection error during the
read process happens. If continue is specified the process emits a warning and waits for the connection to
come back. If the parameter is omitted the default is exit which cause the replica process to stop with error.

• auto_maintenance specifies the timeout after an automatic maintenance is triggered. The parameter accepts
values valid for the PostgreSQL interval data type (e.g. 1 day). If the value is set to disabled the automatic
maintenance doesn’t run. If the parameter is omitted the default is disabled.

• gtid_enable (EXPERIMENTAL) Specifies whether to use the gtid to auto position the replica stream. This
parameter have effect only on MySQL and only if the server is configured with the GTID.

• type specifies the source database type. The system supports mysql or pgsql. See below for the pgsql
limitations.

Skip events configuration

1 sources:
2 mysql:
3 db_conn:
4 host: "localhost"
5 port: "3306"
6 user: "usr_replica"
7 password: "never_commit_passwords"
8 charset: 'utf8'
9 connect_timeout: 10

10 schema_mappings:
11 delphis_mediterranea: loxodonta_africana
12 limit_tables:
13 - delphis_mediterranea.foo
14 skip_tables:
15 - delphis_mediterranea.bar
16 grant_select_to:
17 - usr_readonly
18 lock_timeout: "120s"
19 my_server_id: 100
20 replica_batch_size: 10000
21 replay_max_rows: 10000

(continues on next page)

38 Chapter 6. The configuration file

https://www.postgresql.org/docs/current/static/datatype-datetime.html#DATATYPE-INTERVAL-INPUT

pg_chameleon Documentation, Release v2.0.18

(continued from previous page)

22 batch_retention: '1 day'
23 copy_max_memory: "300M"
24 copy_mode: 'file'
25 out_dir: /tmp
26 sleep_loop: 1
27 on_error_replay: continue
28 on_error_read: continue
29 auto_maintenance: "disabled"
30 gtid_enable: false
31 type: mysql
32 skip_events:
33 insert:
34 - delphis_mediterranea.foo # skips inserts on delphis_mediterranea.foo
35 delete:
36 - delphis_mediterranea # skips deletes on schema delphis_mediterranea
37 update:
38 keep_existing_schema: No

The skip_events variable allows to tell pg_chameleon to skip events for tables or entire schemas. The exam-
ple provided with configuration-example.ym disables the inserts on the table delphis_mediterranea.foo and
disables the deletes on the entire schema delphis_mediterranea.

Keep existing schema

1 sources:
2 mysql:
3 db_conn:
4 host: "localhost"
5 port: "3306"
6 user: "usr_replica"
7 password: "never_commit_passwords"
8 charset: 'utf8'
9 connect_timeout: 10

10 schema_mappings:
11 delphis_mediterranea: loxodonta_africana
12 limit_tables:
13 - delphis_mediterranea.foo
14 skip_tables:
15 - delphis_mediterranea.bar
16 grant_select_to:
17 - usr_readonly
18 lock_timeout: "120s"
19 my_server_id: 100
20 replica_batch_size: 10000
21 replay_max_rows: 10000
22 batch_retention: '1 day'
23 copy_max_memory: "300M"
24 copy_mode: 'file'
25 out_dir: /tmp
26 sleep_loop: 1
27 on_error_replay: continue
28 on_error_read: continue
29 auto_maintenance: "disabled"
30 gtid_enable: false
31 type: mysql

(continues on next page)

6.1. The configuration file 39

pg_chameleon Documentation, Release v2.0.18

(continued from previous page)

32 skip_events:
33 insert:
34 - delphis_mediterranea.foo # skips inserts on delphis_mediterranea.foo
35 delete:
36 - delphis_mediterranea # skips deletes on schema delphis_mediterranea
37 update:
38 keep_existing_schema: No

When set to Yes init_replica,refresh_schema and sync_tables do not recreate the affected tables using the data from
the MySQL source.

Instead the existing tables are truncated and the data is reloaded. A REINDEX TABLE is executed in order to have
the indices in good shape after the reload.

When keep_existing_schema is set to Yes the parameter grant_select_to have no effect.

PostgreSQL source type (EXPERIMENTAL)

pg_chameleon 2.0 have an experimental support for the postgresql source type. When set to pgsql the system expects
a postgresql source database rather a mysql. The following limitations apply.

• There is no support for real time replica

• The data copy happens always with file method

• The copy_max_memory doesn’t apply

• The type override doesn’t apply

• Only init_replica is currently supported

• The source connection string requires a database name

• In the show_status detailed command the replicated tables counters are always zero

1 pgsql:
2 db_conn:
3 host: "localhost"
4 port: "5432"
5 user: "usr_replica"
6 password: "never_commit_passwords"
7 database: "db_replica"
8 charset: 'utf8'
9 connect_timeout: 10

10 schema_mappings:
11 loxodonta_africana: elephas_maximus
12 limit_tables:
13 - loxodonta_africana.foo
14 skip_tables:
15 - loxodonta_africana.bar
16 copy_max_memory: "300M"
17 grant_select_to:
18 - usr_readonly
19 lock_timeout: "10s"
20 my_server_id: 100
21 replica_batch_size: 3000
22 replay_max_rows: 10000
23 sleep_loop: 5

(continues on next page)

40 Chapter 6. The configuration file

pg_chameleon Documentation, Release v2.0.18

(continued from previous page)

24 batch_retention: '1 day'
25 copy_mode: 'file'
26 out_dir: /tmp
27 type: pgsql

6.1. The configuration file 41

pg_chameleon Documentation, Release v2.0.18

42 Chapter 6. The configuration file

CHAPTER 7

Usage instructions

7.1 Usage

7.1.1 Command line reference

chameleon command [[--config] [--source] [--schema] [--tables] [--logid] [-
→˓-debug] [--rollbar-level]] [--version] [--full]

Table 1: Options
Option Description De-

fault
Example

--configSpecifies the configuration to use in ~.pg_chameleon/
configuration/. The configuration name should be the
file without the extension .yml

default--config foo will use
the file ~.pg_chameleon/
configuration/foo.yml

--sourceSpecifies the source within a configuration file. N/A --source bar
--schemaSpecifies a schema configured within a source. N/A --schema schema_foo
--tablesSpecifies one or more tables configured in a schema. Multiple

tables can be specified separated by comma. The table must
have the schema.

N/A --tables schema_foo.
table_bar

--logid Specifies the log id entry for displaying the error details N/A --logid 30
--debug When added to the command line the debug option disables

any daemonisation and outputs all the logging to the console.
The keybord interrupt signal is trapped correctly.

N/A --debug

--versionDisplays the package version. N/A --version
--rollbar-levelSets the maximum level for the messages to be sent to rolllbar.

Accepted values: “critical” “error” “warning” “info”
info --rollbar-level error

--full Runs a VACUUM FULL on the log tables when the
run_maintenance is executed

N/A --full

43

pg_chameleon Documentation, Release v2.0.18

Table 2: Command list reference
Command Description Options
set_configuration_filesSetup the example configuration files and directories in ~/.

pg_chameleon
show_config Displays the configuration for the configuration --config
show_sourcesDisplays the sourcches configured for the configuration --config
show_status Displays an overview of the status of the sources configured within the con-

figuration. Specifying the source gives more details about that source
--config
--source

show_errors Displays the errors logged by the replay function. If a log id is specified then
the log entry is displayed entirely

--config
--logid

create_replica_schemaCreates a new replication schema into the config’s destination database --config
drop_replica_schemaDrops an existing replication schema from the config’s destination database --config
upgrade_replica_schemaUpgrades the replica schema from a an older version --config
add_source Adds a new source to the replica catalogue --config

--source
drop_source Remove an existing source from the replica catalogue --config

--source
init_replicaInitialise the replica for an existing source --config

--source
copy_schema Copy only the schema from mysql to PostgreSQL. --config

--source
update_schema_mappingsUpdate the schema mappings stored in the replica catalogue using the data

from the configuration file.
--config
--source

refresh_schemaSynchronise all the tables for a given schema within an already initialised
source.

--config
--source
--schema

sync_tables Synchronise one or more tables within an already initialised source. The
switch --tables accepts the special name disabled to resync all the
tables with replica disabled.

--config
--source
--tables

start_replicaStarts the replica process daemon --config
--source

stop_replicaStops the replica process daemon --config
--source

detach_replicaDetaches a replica from the mysql master configuring the postgres schemas
to work as a standalone system. Useful for migrations.

--config
--source

enable_replicaEnables the replica for the given source changing the source status to stopped.
It’s useful if the replica crashes.

--config
--source

run_maintenanceRuns a VACUUM on the log tables for the given source. If is specified then
the maintenance runs a VACUUM FULL

--config
--source
--full

stop_all_replicasStops all the running sources within the target postgresql database. --config

7.1.2 Example

Create a virtualenv and activate it

python3 -m venv venv
source venv/bin/activate

Install pg_chameleon

44 Chapter 7. Usage instructions

pg_chameleon Documentation, Release v2.0.18

pip install pip --upgrade
pip install pg_chameleon

Run the set_configuration_files command in order to create the configuration directory.

chameleon set_configuration_files

cd in ~/.pg_chameleon/configuration and copy the file config-example.yml` to ``default.
yml.

In MySQL create a user for the replica.

CREATE USER usr_replica ;
SET PASSWORD FOR usr_replica=PASSWORD('replica');
GRANT ALL ON sakila.* TO 'usr_replica';
GRANT RELOAD ON *.* to 'usr_replica';
GRANT REPLICATION CLIENT ON *.* to 'usr_replica';
GRANT REPLICATION SLAVE ON *.* to 'usr_replica';
FLUSH PRIVILEGES;

Add the configuration for the replica to my.cnf. It requires a MySQL restart.

binlog_format= ROW
binlog_row_image=FULL
log-bin = mysql-bin
server-id = 1
expire_logs_days = 10

In PostgreSQL create a user for the replica and a database owned by the user

CREATE USER usr_replica WITH PASSWORD 'replica';
CREATE DATABASE db_replica WITH OWNER usr_replica;

Check you can connect to both databases from the machine where pg_chameleon is installed.

For MySQL

mysql -p -h derpy -u usr_replica sakila
Enter password:
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 116
Server version: 5.6.30-log Source distribution

Copyright (c) 2000, 2016, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql>

For PostgreSQL

7.1. Usage 45

pg_chameleon Documentation, Release v2.0.18

psql -h derpy -U usr_replica db_replica
Password for user usr_replica:
psql (9.5.5)
Type "help" for help.
db_replica=>

Check the docs for the configuration file reference. It will help you to configure correctly the connections.

Initialise the replica

chameleon create_replica_schema --debug
chameleon add_source --config default --debug
chameleon init_replica --config default --debug

Start the replica with

chameleon start_replica --config default --source example

Check the source status

chameleon show_status --source example

Check the error log

chameleon show_errors

chameleon start_replica --config default --source example

To stop the replica

chameleon stop_replica --config default --source example

To detach the replica

chameleon detach_replica --config default --source example

46 Chapter 7. Usage instructions

CHAPTER 8

Module reference

8.1 global_lib api documentation

8.2 mysql_lib api documentation

8.3 pg_lib api documentation

class pg_lib.pg_encoder(*, skipkeys=False, ensure_ascii=True, check_circular=True, al-
low_nan=True, sort_keys=False, indent=None, separators=None,
default=None)

Bases: json.encoder.JSONEncoder

default(obj)
Implement this method in a subclass such that it returns a serializable object for o, or calls the base
implementation (to raise a TypeError).

For example, to support arbitrary iterators, you could implement default like this:

def default(self, o):
try:

iterable = iter(o)
except TypeError:

pass
else:

return list(iterable)
Let the base class default method raise the TypeError
return JSONEncoder.default(self, o)

encode(o)
Return a JSON string representation of a Python data structure.

47

pg_chameleon Documentation, Release v2.0.18

>>> from json.encoder import JSONEncoder
>>> JSONEncoder().encode({"foo": ["bar", "baz"]})
'{"foo": ["bar", "baz"]}'

item_separator = ', '

iterencode(o, _one_shot=False)
Encode the given object and yield each string representation as available.

For example:

for chunk in JSONEncoder().iterencode(bigobject):
mysocket.write(chunk)

key_separator = ': '

class pg_lib.pg_engine
Bases: object

add_source()
The method adds a new source to the replication catalog. The method calls the function fn_refresh_parts()
which generates the log tables used by the replica. If the source is already present a warning is issued and
no other action is performed.

build_alter_table(schema, token)
The method builds the alter table statement from the token data. The function currently supports the
following statements. DROP TABLE ADD COLUMN CHANGE MODIFY

The change and modify are potential source of breakage for the replica because of the mysql implicit
fallback data types. For better understanding please have a look to

http://www.cybertec.at/why-favor-postgresql-over-mariadb-mysql/

Parameters

• schema – The schema where the affected table is stored on postgres.

• token – A dictionary with the tokenised sql statement

Returns query the DDL query in the PostgreSQL dialect

Return type string

build_create_index(schema, table, index_data)
The method loops over the list index_data and builds a new list with the statements for the indices.

Parameters

• destination_schema – the schema where the table belongs

• table_name – the table name

• index_data – the index dictionary used to build the create index statements

Returns a list with the alter and create index for the given table

Return type list

build_enum_ddl(schema, enm_dic)
The method builds the enum DDL using the token data. The postgresql system catalog is queried to
determine whether the enum exists and needs to be altered. The alter is not written in the replica log table
but executed as single statement as PostgreSQL do not allow the alter being part of a multi command SQL.

Parameters

48 Chapter 8. Module reference

http://www.cybertec.at/why-favor-postgresql-over-mariadb-mysql/

pg_chameleon Documentation, Release v2.0.18

• schema – the schema where the enumeration is present

• enm_dic – a dictionary with the enumeration details

Returns a dictionary with the pre_alter and post_alter statements (e.g. pre alter create type , post
alter drop type)

Return type dictionary

check_auto_maintenance()
This method checks if the the maintenance for the given source is required. The SQL compares the last
maintenance stored in the replica catalogue with the NOW() function. If the value is bigger than the
configuration parameter auto_maintenance then it returns true. Otherwise returns false.

Returns flag which tells if the maintenance should run or not

Return type boolean

check_postgis()
The method checks whether postgis is present or not on the

check_replica_schema()
The method checks if the sch_chameleon exists

Returns count from information_schema.schemata

Return type integer

check_schema_mappings(exclude_current_source=False)
The default is false.

The method checks if there is already a destination schema in the stored schema mappings. As each
schema should be managed by one mapping only, if the method returns None then the source can be store
safely. Otherwise the action. The method doesn’t take any decision leaving this to the calling methods.
The method assumes there is a database connection active. The method returns a list or none. If the list
is returned then contains the count and the destination schema name that are already present in the replica
catalogue.

Parameters exclude_current_source – If set to true the check excludes the current
source name from the check.

Returns the schema already mapped in the replica catalogue.

Return type list

check_source()
The method checks if the source name stored in the class variable self.source is already present. As this
method is used in both add and drop source it just retuns the count of the sources. Any decision about the
source is left to the calling method. The method assumes there is a database connection active.

check_source_consistent()
This method checks if the database is consistent using the source’s high watermark and the source’s flab
b_consistent. If the batch data is larger than the source’s high watermark then the source is marked consis-
tent and all the log data stored witth the source’s tables are set to null in order to ensure all the tables are
replicated.

clean_batch_data()
This method removes all the batch data for the source id stored in the class varible self.i_id_source.

The method assumes there is a database connection active.

clean_not_processed_batches()
The method cleans up the not processed batches rows from the table sch_chameleon.t_log_replica. The

8.3. pg_lib api documentation 49

pg_chameleon Documentation, Release v2.0.18

method should be executed only before starting a replica process. The method assumes there is a database
connection active.

cleanup_idx_cons(schema, table)
The method cleansup the constraint and indices for the given table using the statements collected in col-
lect_idx_cons. :param schema: the table’s schema :param table: the table’s name

cleanup_replayed_batches()
The method cleanup the replayed batches for the given source accordingly with the source’s parameter
batch_retention

cleanup_source_tables()
The method cleans up the tables for active source in sch_chameleon.t_replica_tables.

cleanup_table_events()
The method cleans up the log events in the source’s log tables for the given tables

collect_idx_cons(schema, table)
The method collects indices and primary keys for the given table from the views v_idx_pkeys,v_fkeys.
:param schema: the table’s schema :param table: the table’s name

connect_db()
Connects to PostgreSQL using the parameters stored in self.dest_conn. The dictionary is built using the
parameters set via adding the key dbname to the self.pg_conn dictionary. This method’s connection and
cursors are widely used in the procedure except for the replay process which uses a dedicated connection
and cursor.

copy_data(csv_file, schema, table, column_list)
The method copy the data into postgresql using psycopg2’s copy_expert. The csv_file is a file like ob-
ject which can be either a csv file or a string io object, accordingly with the configuration parameter
copy_mode. The method assumes there is a database connection active.

Parameters

• csv_file – file like object with the table’s data stored in CSV format

• schema – the schema used in the COPY FROM command

• table – the table name used in the COPY FROM command

• column_list – A string with the list of columns to use in the COPY FROM command
already quoted and comma separated

create_database_schema(schema_name)
The method creates a database schema. The create schema is issued with the clause IF NOT EXISTS.
Should the schema be already present the create is skipped.

Parameters schema_name – The schema name to be created.

create_foreign_keys()
The method creates and validates the foreign keys if we are not keeping the existing schema.

create_idx_cons(schema, table)
The method creates the constraint and indices for the given table using the statements collected in col-
lect_idx_cons. The foreign keys are not created at this stage as they may be left inconsistent during the
initial replay phase. The foreign key creation is managed by __create_foreign_keys() which is executed
when the replica reaches the consistent status. :param schema: the table’s schema :param table: the table’s
name

create_indices(schema, table, index_data)
The method loops over the list index_data and creates the indices on the table specified with schema and
table parameters. The method assumes there is a database connection active.

50 Chapter 8. Module reference

pg_chameleon Documentation, Release v2.0.18

Parameters

• schema – the schema name where table belongs

• table – the table name where the data should be inserted

• index_data – a list of dictionaries with the index metadata for the given table.

Returns a list with the eventual column(s) used as primary key

Return type list

create_replica_schema()
The method installs the replica schema sch_chameleon if not already present.

create_table(table_metadata, table_name, schema, metadata_type)
Executes the create table returned by __build_create_table (mysql or pgsql) on the destination_schema.

Parameters

• table_metadata – the column dictionary extracted from the source’s informa-
tion_schema or builty by the sql_parser class

• table_name – the table name

• destination_schema – the schema where the table belongs

• metadata_type – the metadata type, currently supported mysql and pgsql

detach_replica()
The method detach the replica from mysql, resets all the sequences and creates the foreign keys using the
dictionary extracted from mysql. The result is a stand alone set of schemas ready to work.

The foreign keys are first created invalid then validated in a second time.

disconnect_db()
The method disconnects the postgres connection if there is any active. Otherwise ignore it.

drop_database_schema(schema_name, cascade)
The method drops a database schema. The drop can be either schema is issued with the clause IF NOT
EXISTS. Should the schema be already present the create is skipped.

Parameters

• schema_name – The schema name to be created.

• schema_name – If true the schema is dropped with the clause cascade.

drop_replica_schema()
The method removes the service schema discarding all the replica references. The replicated tables are
kept in place though.

drop_source()
The method deletes the source from the replication catalogue. The log tables are dropped as well, discard-
ing any replica reference for the source.

end_maintenance()
The method sets the flag b_maintenance to false for the given source

generate_default_statements(schema, table, column, create_column=None)
The method gets the default value associated with the table and column removing the cast. :param schema:
The schema name :param table: The table name :param column: The column name :return: the statements
for dropping and creating default value on the affected table :rtype: dictionary

8.3. pg_lib api documentation 51

pg_chameleon Documentation, Release v2.0.18

get_active_sources()
The method counts all the sources with state not in ‘ready’ or ‘stopped’. The method assumes there is a
database connection active.

get_batch_data()
The method updates the batch status to started for the given source_id and returns the batch informations.

Returns psycopg2 fetchall results without any manipulation

Return type psycopg2 tuple

get_catalog_version()
The method returns if the replica schema’s version

Returns the version string selected from sch_chameleon.v_version

Return type text

get_data_type(column, schema, table)
The method determines whether the specified type has to be overridden or not.

Parameters

• column – the column dictionary extracted from the information_schema or built in the
sql_parser class

• schema – the schema name

• table – the table name

Returns the postgresql converted column type

Return type string

get_existing_pkey(schema, table)
The method gets the primary key of an existing table and returns the field(s) composing the PKEY as a
list. :param schema: the schema name where table belongs :param table: the table name where the data
should be inserted :return: a list with the eventual column(s) used as primary key :rtype: list

get_inconsistent_tables()
The method collects the tables in not consistent state. The informations are stored in a dictionary which
key is the table’s name. The dictionary is used in the read replica loop to determine wheter the table’s
modifications should be ignored because in not consistent state.

Returns a dictionary with the tables in inconsistent state and their snapshot coordinates.

Return type dictionary

get_log_data(log_id)
The method gets the error log entries, if any, from the replica schema. :param log_id: the log id for filtering
the row by identifier :return: a dictionary with the errors logged :rtype: dictionary

get_replica_paused()
The method returns the status of the replica. This value is used in both read/replay replica methods for
updating the corresponding flags. :return: the b_paused flag for the current source :rtype: boolean

get_replica_status()
The method gets the replica status for the given source. The method assumes there is a database connection
active.

get_schema_list()
The method gets the list of source schemas for the given source. The list is generated using the mapping
in sch_chameleon.t_sources. Any change in the configuration file is ignored The method assumes there is
a database connection active.

52 Chapter 8. Module reference

pg_chameleon Documentation, Release v2.0.18

get_schema_mappings()
The method gets the schema mappings for the given source. The list is the one stored in the table
sch_chameleon.t_sources. Any change in the configuration file is ignored The method assumes there
is a database connection active. :return: the schema mappings extracted from the replica catalogue :rtype:
dictionary

get_status()
The method gets the status for all sources configured in the target database. :return: a list with the status
details :rtype: list

get_table_pkey(schema, table)
The method queries the table sch_chameleon.t_replica_tables and gets the primary key associated with the
table, if any. If there is no primary key the method returns None

Parameters

• schema – The table schema

• table – The table name

Returns the primary key associated with the table

Return type list

get_tables_disabled(format=’csv’)
The method returns a CSV or a python list of tables excluded from the replica. The origin’s schema is
determined from the source’s schema mappings jsonb.

Returns CSV list of tables excluded from the replica

Return type text

grant_select()
The method grants the select permissions on all the tables on the replicated schemas to the database roles
listed in the source’s variable grant_select_to. In the case a role doesn’t exist the method emits an error
message and skips the missing user.

insert_batch(group_insert)
Fallback method for the batch insert. Each row event is processed individually and any problematic row is
discarded into the table t_discarded_rows. The row is encoded in base64 in order to prevent any encoding
or type issue.

Parameters group_insert – the event data built in mysql_engine

insert_data(schema, table, insert_data, column_list)
The method is a fallback procedure for when the copy method fails. The procedure performs a row by row
insert, very slow but capable to skip the rows with problematic data (e.g. encoding issues).

Parameters

• schema – the schema name where table belongs

• table – the table name where the data should be inserted

• insert_data – a list of records extracted from the database using the unbuffered cursor

• column_list – the list of column names quoted for the inserts

insert_source_timings()
The method inserts the source timings in the tables t_last_received and t_last_replayed. On conflict sets
the replay/receive timestamps to null. The method assumes there is a database connection active.

8.3. pg_lib api documentation 53

pg_chameleon Documentation, Release v2.0.18

reindex_table(schema, table)
The method run a REINDEX TABLE on the table defined by schema and name. :param schema: the
table’s schema :param table: the table’s name

replay_replica()
The method replays the row images in the target database using the function fn_replay_mysql. The func-
tion returns a composite type. The first element is a boolean flag which is true if the batch still require
replay. it’s false if it doesn’t. In that case the while loop ends. The second element is a, optional list of
table names. If any table cause error during the replay the problem is captured and the table is removed
from the replica. Then the name is returned by the function. As the function can find multiple tables with
errors during a single replay run, the table names are stored in a list (Actually is a postgres array, see the
create_schema.sql file for more details).

Each batch which is looped trough can also find multiple tables so we return a list of lists to the
replica_engine’s calling method.

rollback_upgrade_v1()
The procedure rollsback the upgrade dropping the schema sch_chameleon and renaming the version 1 to
the

run_maintenance()
The method runs the maintenance for the given source. After the replica daemons are paused the procedure
detach the log tables from the parent log table and performs a VACUUM FULL againts the tables. If any
error occurs the tables are attached to the parent table and the replica daemons resumed.

save_discarded_row(row_data)
The method saves the discarded row in the table t_discarded_row along with the id_batch. The row is
encoded in base64 as the t_row_data is a text field.

Parameters row_data – the row data dictionary

save_master_status(master_status)
This method saves the master data determining which log table should be used in the next batch. The
method assumes there is a database connection active.

Parameters master_status – the master data with the binlogfile and the log position

Returns the batch id or none if no batch has been created

Return type integer

set_application_name(action=”)
The method sets the application name in the replica using the variable
self.pg_conn.global_conf.source_name, Making simpler to find the replication processes. If the
source name is not set then a generic PGCHAMELEON name is used.

set_autocommit_db(auto_commit)
The method sets the auto_commit flag for the class connection self.pgsql_conn. In general the connection
is always autocommit but in some operations (e.g. update_schema_mappings) is better to run the process
in a single transaction in order to avoid inconsistencies.

Parameters autocommit – boolean flag which sets autocommit on or off.

set_batch_processed(id_batch)
The method updates the flag b_processed and sets the processed timestamp for the given batch id. The
event ids are aggregated into the table t_batch_events used by the replay function.

Parameters id_batch – the id batch to set as processed

set_consistent_table(table, schema)
The method set to NULL the binlog name and position for the given table. When the table is marked
consistent the read replica loop reads and saves the table’s row images.

54 Chapter 8. Module reference

pg_chameleon Documentation, Release v2.0.18

Parameters table – the table name

set_lock_timeout()
The method sets the lock timeout using the value stored in the class attribute lock_timeout.

set_read_paused(read_paused)
The method sets the read proces flag b_paused to true for the given source. The update is performed for
the given source and for the negation of b_paused. This approach will prevent unnecessary updates on the
table t_last_received.

Parameters read_paused – the flag to set for the read replica process.

set_replay_paused(read_paused)
The method sets the read proces flag b_paused to true for the given source. The update is performed for
the given source and for the negation of b_paused. This approach will prevent unnecessary updates on the
table t_last_received.

Parameters read_paused – the flag to set for the read replica process.

set_source_highwatermark(master_status, consistent)
This method saves the master data within the source. The values are used to determine whether the database
has reached the consistent point.

Parameters master_status – the master data with the binlogfile and the log position

set_source_id()
The method sets the class attribute i_id_source for the self.source. The method assumes there is a database
connection active.

set_source_status(source_status)
The method updates the source status for the source_name and sets the class attribute i_id_source. The
method assumes there is a database connection active.

Parameters source_status – The source status to be set.

store_table(schema, table, table_pkey, master_status)
The method saves the table name along with the primary key definition in the table t_replica_tables. This
is required in order to let the replay procedure which primary key to use replaying the update and delete.
If the table is without primary key is not stored. A table without primary key is copied and the indices are
create like any other table. However the replica doesn’t work for the tables without primary key.

If the class variable master status is set then the master’s coordinates are saved along with the table. This
happens in general when a table is added to the replica or the data is refreshed with sync_tables.

Parameters

• schema – the schema name to store in the table t_replica_tables

• table – the table name to store in the table t_replica_tables

• table_pkey – a list with the primary key’s columns. empty if there’s no pkey

• master_status – the master status data .

swap_schemas()
The method loops over the schema_loading class dictionary and swaps the loading with the destination
schemas performing a double rename. The method assumes there is a database connection active.

swap_source_log_table()
The method swaps the sources’s log table and returns the next log table stored in the v_log_table array.
The method expects an active database connection.

Returns The t_log_replica’s active subpartition

8.3. pg_lib api documentation 55

pg_chameleon Documentation, Release v2.0.18

Return type text

swap_tables()
The method loops over the tables stored in the class

truncate_table(schema, table)
The method truncates the table defined by schema and name. :param schema: the table’s schema :param
table: the table’s name

unregister_table(schema, table)
This method is used to remove a table from the replica catalogue. The table is just deleted from the table
sch_chameleon.t_replica_tables.

Parameters

• schema – the schema name where the table is stored

• table – the table name to remove from t_replica_tables

unset_lock_timeout()
The method sets the lock timeout using the value stored in the class attribute lock_timeout.

update_schema_mappings()
The method updates the schema mappings for the given source. Before executing the updates the method
checks for the need to run an update and for any mapping already present in the replica catalogue. If
everything is fine the database connection is set autocommit=false. The method updates the schemas in
the table t_replica_tables and then updates the mappings in the table t_sources. After the final update the
commit is issued to make the updates permanent.

Todo The method should run only at replica stopped for the given source. The method should
also replay all the logged rows for the given source before updating the schema mappings to
avoid to get an inconsistent replica.

upgrade_catalogue_v1()
The method upgrade a replica catalogue from version 1 to version 2. The original catalogue is not al-
tered but just renamed. All the existing data are transferred into the new catalogue loaded using the
create_schema.sql file.

upgrade_catalogue_v20()
The method applies the migration scripts to the replica catalogue version 2.0. The method checks that all
sources are in stopped or ready state.

write_batch(group_insert)
Main method for adding the batch data in the log tables. The row data from group_insert are mogrified in
CSV format and stored in the string like object csv_file.

psycopg2’s copy expert is used to store the event data in PostgreSQL.

Should any error occur the procedure fallsback to insert_batch.

Parameters group_insert – the event data built in mysql_engine

write_ddl(token, query_data, destination_schema)
The method writes the DDL built from the tokenised sql into PostgreSQL.

Parameters

• token – the tokenised query

• query_data – query’s metadata (schema,binlog, etc.)

• destination_schema – the postgresql destination schema determined using the
schema mappings.

56 Chapter 8. Module reference

pg_chameleon Documentation, Release v2.0.18

class pg_lib.pgsql_source
Bases: object

init_replica()
The method performs a full init replica for the given source

8.4 sql_util api documentation

class sql_util.sql_token
Bases: object

The class tokenises the sql statements captured by mysql_engine. Several regular expressions analyse and build
the elements of the token. The DDL support is purposely limited to the following.

DROP PRIMARY KEY CREATE (UNIQUE) INDEX/KEY CREATE TABLE ALTER TABLE

The regular expression m_fkeys is used to remove any foreign key definition from the sql statement as we don’t
enforce any foreign key on the PostgreSQL replication.

build_column_dic(inner_stat)
The method builds a list of dictionaries with the column definitions.

The regular expression m_fields is used to find all the column occurrences and, for each occurrence, the
method parse_column is called. If parse_column returns a dictionary, this is appended to the list col_parse.

Parameters inner_stat – The statement within the round brackets in CREATE TABLE

Returns cols_parse the list of dictionary with the column definitions

Return type list

build_key_dic(inner_stat, table_name)
The method matches and tokenise the primary key and index/key definitions in the create table’s inner
statement.

As the primary key can be defined as column or table constraint there is an initial match attempt with the
regexp m_inline_pkeys. If the match is successful then the primary key dictionary is built from the match
data. Otherwise the primary key dictionary is built using the eventual table key definition.

The method search for primary keys keys and indices defined in the inner_stat. The index name PRIMARY
is used to tell pg_engine we are building a primary key. Otherwise the index name is built using the format
(uk)idx_tablename[0:20] + counter. If there’s a match for a primary key the composing columns are saved
into pkey_cols.

The tablename limitation is required as PostgreSQL enforces a strict limit for the identifier name’s lenght.

Each key dictionary have three keys. index_name, the index name or PRIMARY index_columns, a list
with the column names non_unique, follows the MySQL’s information schema convention and marks an
index if is unique or not.

When the dictionary is built is appended to idx_list and finally returned to the calling method
parse_create_table.s

Parameters

• inner_stat – The statement within the round brackets in CREATE TABLE

• table_name – The table name

Returns idx_list the list of dictionary with the index definitions

Return type list

8.4. sql_util api documentation 57

pg_chameleon Documentation, Release v2.0.18

parse_alter_table(malter_table)
The method parses the alter table match. As alter table can be composed of multiple commands the
original statement (group 0 of the match object) is searched with the regexp m_alter_list. For each element
in returned by findall the first word is evaluated as command. The parse alter table manages the following
commands. DROP,ADD,CHANGE,MODIFY.

Each command build a dictionary alter_dic with at leaset the keys command and name defined. Those
keys are respectively the commant itself and the attribute name affected by the command.

ADD defines the keys type and dimension. If type is enum then the dimension key stores the enumeration
list.

CHANGE defines the key command and then runs a match with m_alter_change. If the match is successful
the following keys are defined.

old is the old previous field name new is the new field name type is the new data type dimension the field’s
dimensions or the enum list if type is enum

MODIFY works similarly to CHANGE except that the field is not renamed. In that case we have only the
keys type and dimension defined along with name and command.s

The class’s regular expression self.m_ignore_keywords is used to skip the CONSTRAINT,INDEX and
PRIMARY and FOREIGN KEY KEYWORDS in the alter command.

Parameters malter_table – The match object returned by the match method against tha
alter table statement.

Returns stat_dic the alter table dictionary tokenised from the match object.

Return type dictionary

parse_column(col_def)
This method parses the column definition searching for the name, the data type and the dimensions. If
there’s a match the dictionary is built with the keys column_name, the column name data_type, the col-
umn’s data type is nullable, the value is set always to yes except if the column is primary key (column
name present in key_cols) enum_list,character_maximum_length,numeric_precision are the dimensions
associated with the data type. The auto increment is set if there’s a match for the auto increment specifica-
tion.s

Parameters col_def – The column definition

Returns col_dic the column dictionary

Return type dictionary

parse_create_table(sql_create, table_name)
The method parse and generates a dictionary from the CREATE TABLE statement. The regular expression
m_inner is used to match the statement within the round brackets.

This inner_stat is then cleaned from the primary keys, keys indices and foreign keys in order to get the
column list. The indices are stored in the dictionary key “indices” using the method build_key_dic. The
regular expression m_pars is used for finding and replacing all the commas with the | symbol within the
round brackets present in the columns list. At the column list is also appended a comma as required by the
regepx used in build_column_dic. The build_column_dic method is then executed and the return value is
stored in the dictionary key “columns”

Parameters

• sql_create – The sql string with the CREATE TABLE statement

• table_name – The table name

Returns table_dic the table dictionary tokenised from the CREATE TABLE

58 Chapter 8. Module reference

pg_chameleon Documentation, Release v2.0.18

Return type dictionary

parse_rename_table(rename_statement)
The method parses the rename statements storing in a list the old and the new table name.

Parameters rename_statement – The statement string without the RENAME TABLE

Returns rename_list, a list with the old/new table names inside

Return type list

parse_sql(sql_string)
The method cleans and parses the sql string A regular expression replaces all the default value definitions
with a space. Then the statements are split in a list using the statement separator;

For each statement a set of regular expressions remove the comments, single and multi line. Parenthesis
are surrounded by spaces and commas are rewritten in order to get at least one space after the comma. The
statement is then put on a single line and stripped.

Different match are performed on the statement. RENAME TABLE CREATE TABLE DROP TABLE
ALTER TABLE ALTER INDEX DROP PRIMARY KEY TRUNCATE TABLE

The match which is successful determines the parsing of the rest of the statement. Each parse builds a
dictionary with at least two keys “name” and “command”.

Each statement parse comes with specific addictional keys.

When the token dictionary is complete is added to the class list tokenised

Parameters sql_string – The sql string with the sql statements.

quote_cols(cols)
The method adds the ” quotes to the column names. The string is converted to a list using the split method
with the comma separator. The columns are then stripped and quoted with the “”. Finally the list elements
are rejoined in a string which is returned. The method is used in build_key_dic to sanitise the column
names.

Parameters cols – The columns string

Returns The columns quoted between “.

Return type text

reset_lists()
The method resets the lists to empty lists after a successful tokenisation.

8.4. sql_util api documentation 59

pg_chameleon Documentation, Release v2.0.18

60 Chapter 8. Module reference

Python Module Index

p
pg_lib, 47

s
sql_util, 57

61

pg_chameleon Documentation, Release v2.0.18

62 Python Module Index

Index

A
add_source() (pg_lib.pg_engine method), 48

B
build_alter_table() (pg_lib.pg_engine method),

48
build_column_dic() (sql_util.sql_token method),

57
build_create_index() (pg_lib.pg_engine

method), 48
build_enum_ddl() (pg_lib.pg_engine method), 48
build_key_dic() (sql_util.sql_token method), 57

C
check_auto_maintenance() (pg_lib.pg_engine

method), 49
check_postgis() (pg_lib.pg_engine method), 49
check_replica_schema() (pg_lib.pg_engine

method), 49
check_schema_mappings() (pg_lib.pg_engine

method), 49
check_source() (pg_lib.pg_engine method), 49
check_source_consistent() (pg_lib.pg_engine

method), 49
clean_batch_data() (pg_lib.pg_engine method),

49
clean_not_processed_batches()

(pg_lib.pg_engine method), 49
cleanup_idx_cons() (pg_lib.pg_engine method),

50
cleanup_replayed_batches()

(pg_lib.pg_engine method), 50
cleanup_source_tables() (pg_lib.pg_engine

method), 50
cleanup_table_events() (pg_lib.pg_engine

method), 50
collect_idx_cons() (pg_lib.pg_engine method),

50
connect_db() (pg_lib.pg_engine method), 50

copy_data() (pg_lib.pg_engine method), 50
create_database_schema() (pg_lib.pg_engine

method), 50
create_foreign_keys() (pg_lib.pg_engine

method), 50
create_idx_cons() (pg_lib.pg_engine method), 50
create_indices() (pg_lib.pg_engine method), 50
create_replica_schema() (pg_lib.pg_engine

method), 51
create_table() (pg_lib.pg_engine method), 51

D
default() (pg_lib.pg_encoder method), 47
detach_replica() (pg_lib.pg_engine method), 51
disconnect_db() (pg_lib.pg_engine method), 51
drop_database_schema() (pg_lib.pg_engine

method), 51
drop_replica_schema() (pg_lib.pg_engine

method), 51
drop_source() (pg_lib.pg_engine method), 51

E
encode() (pg_lib.pg_encoder method), 47
end_maintenance() (pg_lib.pg_engine method), 51

G
generate_default_statements()

(pg_lib.pg_engine method), 51
get_active_sources() (pg_lib.pg_engine

method), 51
get_batch_data() (pg_lib.pg_engine method), 52
get_catalog_version() (pg_lib.pg_engine

method), 52
get_data_type() (pg_lib.pg_engine method), 52
get_existing_pkey() (pg_lib.pg_engine method),

52
get_inconsistent_tables() (pg_lib.pg_engine

method), 52
get_log_data() (pg_lib.pg_engine method), 52

63

pg_chameleon Documentation, Release v2.0.18

get_replica_paused() (pg_lib.pg_engine
method), 52

get_replica_status() (pg_lib.pg_engine
method), 52

get_schema_list() (pg_lib.pg_engine method), 52
get_schema_mappings() (pg_lib.pg_engine

method), 52
get_status() (pg_lib.pg_engine method), 53
get_table_pkey() (pg_lib.pg_engine method), 53
get_tables_disabled() (pg_lib.pg_engine

method), 53
grant_select() (pg_lib.pg_engine method), 53

I
init_replica() (pg_lib.pgsql_source method), 57
insert_batch() (pg_lib.pg_engine method), 53
insert_data() (pg_lib.pg_engine method), 53
insert_source_timings() (pg_lib.pg_engine

method), 53
item_separator (pg_lib.pg_encoder attribute), 48
iterencode() (pg_lib.pg_encoder method), 48

K
key_separator (pg_lib.pg_encoder attribute), 48

P
parse_alter_table() (sql_util.sql_token method),

57
parse_column() (sql_util.sql_token method), 58
parse_create_table() (sql_util.sql_token

method), 58
parse_rename_table() (sql_util.sql_token

method), 59
parse_sql() (sql_util.sql_token method), 59
pg_encoder (class in pg_lib), 47
pg_engine (class in pg_lib), 48
pg_lib (module), 47
pgsql_source (class in pg_lib), 56

Q
quote_cols() (sql_util.sql_token method), 59

R
reindex_table() (pg_lib.pg_engine method), 53
replay_replica() (pg_lib.pg_engine method), 54
reset_lists() (sql_util.sql_token method), 59
rollback_upgrade_v1() (pg_lib.pg_engine

method), 54
run_maintenance() (pg_lib.pg_engine method), 54

S
save_discarded_row() (pg_lib.pg_engine

method), 54

save_master_status() (pg_lib.pg_engine
method), 54

set_application_name() (pg_lib.pg_engine
method), 54

set_autocommit_db() (pg_lib.pg_engine method),
54

set_batch_processed() (pg_lib.pg_engine
method), 54

set_consistent_table() (pg_lib.pg_engine
method), 54

set_lock_timeout() (pg_lib.pg_engine method),
55

set_read_paused() (pg_lib.pg_engine method), 55
set_replay_paused() (pg_lib.pg_engine method),

55
set_source_highwatermark()

(pg_lib.pg_engine method), 55
set_source_id() (pg_lib.pg_engine method), 55
set_source_status() (pg_lib.pg_engine method),

55
sql_token (class in sql_util), 57
sql_util (module), 57
store_table() (pg_lib.pg_engine method), 55
swap_schemas() (pg_lib.pg_engine method), 55
swap_source_log_table() (pg_lib.pg_engine

method), 55
swap_tables() (pg_lib.pg_engine method), 56

T
truncate_table() (pg_lib.pg_engine method), 56

U
unregister_table() (pg_lib.pg_engine method),

56
unset_lock_timeout() (pg_lib.pg_engine

method), 56
update_schema_mappings() (pg_lib.pg_engine

method), 56
upgrade_catalogue_v1() (pg_lib.pg_engine

method), 56
upgrade_catalogue_v20() (pg_lib.pg_engine

method), 56

W
write_batch() (pg_lib.pg_engine method), 56
write_ddl() (pg_lib.pg_engine method), 56

64 Index

	FEATURES
	CHANGELOG
	changelog

	RELEASE NOTES
	RELEASE NOTES

	Upgrade procedure
	Maintenance release upgrade
	Version 1.8 to 2.0 upgrade

	README
	Requirements
	Setup
	Configuration directory

	The configuration file
	The configuration file

	Usage instructions
	Usage

	Module reference
	global_lib api documentation
	mysql_lib api documentation
	pg_lib api documentation
	sql_util api documentation

	Python Module Index
	Index

